Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7124
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEfe, Mehmet Önder-
dc.contributor.authorDebias, Marco-
dc.contributor.authorYan, Peng-
dc.contributor.authorÖzbay, Hitay-
dc.contributor.authorSamimy, Mohammad-
dc.date.accessioned2021-09-11T15:55:45Z-
dc.date.available2021-09-11T15:55:45Z-
dc.date.issued2008en_US
dc.identifier.issn0020-7721-
dc.identifier.issn1464-5319-
dc.identifier.urihttps://doi.org/10.1080/00207720701726188-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7124-
dc.description.abstractA fundamental problem in the applications involved with aerodynamic flows is the difficulty in finding a suitable dynamical model containing the most significant information pertaining to the physical system. Especially in the design of feedback control systems, a representative model is a necessary tool constraining the applicable forms of control laws. This article addresses the modelling problem by the use of feedforward neural networks (NNs). Shallow cavity flows at different Mach numbers are considered, and a single NN admitting the Mach number as one of the external inputs is demonstrated to be capable of predicting the floor pressures. Simulations and real time experiments have been presented to support the learning and generalization claims introduced by NN-based models.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofInternational Journal of Systems Scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectflow modelingen_US
dc.subjectneural networksen_US
dc.subjectidentificationen_US
dc.titleNeural Network-Based Modelling of Subsonic Cavity Flowsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume39en_US
dc.identifier.issue2en_US
dc.identifier.startpage105en_US
dc.identifier.endpage117en_US
dc.authorid0000-0003-1134-0679-
dc.authorid0000-0002-5992-895X-
dc.authorid0000-0002-1941-5148-
dc.identifier.wosWOS:000253193400001en_US
dc.identifier.scopus2-s2.0-38349098251en_US
dc.institutionauthorÖnder Efe, Mehmet-
dc.identifier.doi10.1080/00207720701726188-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

8
checked on Nov 2, 2024

Page view(s)

52
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.