Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7110
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTekeli, Bürkan-
dc.contributor.authorGürbüz, Sevgi Zübeyde-
dc.contributor.authorYüksel, Melda-
dc.date.accessioned2021-09-11T15:55:43Z-
dc.date.available2021-09-11T15:55:43Z-
dc.date.issued2013-
dc.identifier.citation21st Signal Processing and Communications Applications Conference (SIU) -- APR 24-26, 2013 -- CYPRUSen_US
dc.identifier.isbn978-1-4673-5563-6; 978-1-4673-5562-9-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7110-
dc.description.abstractThe unique, bi-pedal motion of humans has been shown to generate a characteristic micro-Doppler signature in the time-frequency domain that can be used to discriminate humans from not just other targets, but also between different activities, such as walking and running. In the literature, many different features have been proposed for classification applications. However, it is not known which features have a greater impact on classification performance, or indeed how many features should be used to achieve good classification. In this work, the mutual information of features extracted from human micro-Doppler signatures is computed. Taking the problem of classifying human arm-swing as an example, the features extracted are ordered in terms of importance.en_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2013 21St Signal Processing And Communications Applications Conference (Siu)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjecthuman classificationen_US
dc.subjectmicro-Doppleren_US
dc.subjectfeature extractionen_US
dc.subjectinformation theory Ien_US
dc.titleMutual Information of Features Extracted From Human Micro-Doppleren_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference-
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.authorid0000-0002-8029-631X-
dc.authorid0000-0001-7487-9087-
dc.identifier.wosWOS:000325005300280-
dc.identifier.scopus2-s2.0-84880872085-
dc.institutionauthorGürbüz, Sevgi Zübeyde-
dc.institutionauthorYüksel, Melda-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference21st Signal Processing and Communications Applications Conference (SIU)en_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

52
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.