Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7097
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüler, İnan-
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:45:32Z-
dc.date.available2021-09-11T15:45:32Z-
dc.date.issued2007-
dc.identifier.issn1089-7771-
dc.identifier.issn1558-0032-
dc.identifier.urihttps://doi.org/10.1109/TITB.2006.879600-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7097-
dc.description.abstractIn this paper, we proposed the multiclass support vector machine (SVM) with the error-correcting output codes for the multiclass electroencephalogram (EEG) signals classification problem. The probabilistic neural network (PNN) and multilayer perceptron neural network were also tested and benchmarked for their performance on the classification of the EEG signals. Decision making was performed in two stages: feature extraction by computing the wavelet coefficients and the Lyapunov exponents and classification using the classifiers trained on the extracted features. The purpose was to determine an optimum classification scheme for this problem and also to infer clues about the extracted features. Our research demonstrated that the wavelet coefficients and the Lyapunov exponents are the features which well represent the EEG signals and the multiclass SVM and PNN trained on these features achieved high classification accuracies.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Transactions On Information Technology In Biomedicineen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectelectroencephalogram (EEG) signalsen_US
dc.subjectLyapunov exponentsen_US
dc.subjectmulticlass support vector machine (SVM)en_US
dc.subjectprobabilistic neural network (PNN)en_US
dc.subjectwavelet coefficientsen_US
dc.titleMulticlass Support Vector Machines for Eeg-Signals Classificationen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume11en_US
dc.identifier.issue2en_US
dc.identifier.startpage117en_US
dc.identifier.endpage126en_US
dc.identifier.wosWOS:000245158600001-
dc.identifier.scopus2-s2.0-34047114775-
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid17390982-
dc.identifier.doi10.1109/TITB.2006.879600-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

277
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

261
checked on Oct 26, 2024

Page view(s)

90
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.