Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7096
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:45:31Z-
dc.date.available2021-09-11T15:45:31Z-
dc.date.issued2008-
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2007.08.067-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7096-
dc.description.abstractA new approach based oil the implementation of multiclass support vector machine (SVM) with the error correcting output codes (ECOC) is presented for diagnosis of erythemato-squamous diseases. The recurrent neural network (RNN) and multilayer perceptron neural network (MLPNN) were also tested and benchmarked for their performance on the diagnosis of the erythemato-squamous diseases. The domain contained records of patients with known diagnosis. Given a training set of such records, the classifiers learned how to differentiate a new case in the domain. The classifiers were used to detect the six erythemato-squamous diseases when 34 features defining six disease indications were used as inputs. The purpose is to determine all optimum classification scheme for this problem. The present research demonstrated that the features well represent the erythemato-squamous diseases and the multiclass SVM and RNN trained oil these features achieved high classification accuracies. (C) 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmulticlass support vector machine (SVM)en_US
dc.subjecterror correcting output codes (ECOC)en_US
dc.subjectrecurrent neural network (RNN)en_US
dc.subjecterythemato-squamous diseasesen_US
dc.titleMulticlass Support Vector Machines for Diagnosis of Erythemato-Squamous Diseasesen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume35en_US
dc.identifier.issue4en_US
dc.identifier.startpage1733en_US
dc.identifier.endpage1740en_US
dc.identifier.wosWOS:000259432600024-
dc.identifier.scopus2-s2.0-48749124392-
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.eswa.2007.08.067-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

63
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

51
checked on Oct 26, 2024

Page view(s)

58
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.