Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7044
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇağlıyan, Bahri-
dc.contributor.authorGürbüz, Sevgi Zübeyde-
dc.date.accessioned2021-09-11T15:45:07Z-
dc.date.available2021-09-11T15:45:07Z-
dc.date.issued2015en_US
dc.identifier.issn1545-598X-
dc.identifier.issn1558-0571-
dc.identifier.urihttps://doi.org/10.1109/LGRS.2015.2452946-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7044-
dc.description.abstractHuman activity recognition is an emerging technology formany security, surveillance, and health service applications utilizing wireless sensor networks (WSNs). However, the exploitation of radar in WSNs has been only recently made possible through the development of small, low-power, and low-cost wireless radar motes, such as the BumbleBee radar developed by the Samraksh Company. This letter explores the capacity of using the BumbleBee radar for indoor human activity classification based on micro-Doppler signatures. The electromagnetic measurements of the signal transmitted by the BumbleBee radar are made to fully characterize the sensor and its limitations. A database of the multiperspective micro-Doppler signatures measured from the BumbleBee radar is compiled to analyze the classification performance and limitations due to the dwell time and the aspect angle. Within the operational constraints delineated, it is shown that the BumbleBee radar can be used to discriminate between walking, running, and crawling, even under variable conditions.en_US
dc.description.sponsorshipEuropean UnionEuropean Commission [PIRG-GA-2010-268276]; Scientific and Technological Research Council of Turkey (TUBITAK) KariyerTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [113E105]en_US
dc.description.sponsorshipThis work was supported in part by the European Union Seventh Framework Programme (FP7) under Project PIRG-GA-2010-268276 and in part by The Scientific and Technological Research Council of Turkey (TUBITAK) Kariyer under Project 113E105.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Geoscience And Remote Sensing Lettersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjecthuman activity recognitionen_US
dc.subjecthuman micro-doppleren_US
dc.subjectwireless radar networks (WSNs)en_US
dc.titleMicro-Doppler Human Activity Classification Using the Mote-Scale Bumblebee Radaren_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume12en_US
dc.identifier.issue10en_US
dc.identifier.startpage2135en_US
dc.identifier.endpage2139en_US
dc.authorid0000-0001-7487-9087-
dc.identifier.wosWOS:000359576400026en_US
dc.identifier.scopus2-s2.0-85027958173en_US
dc.institutionauthorGürbüz, Sevgi Zübeyde-
dc.identifier.doi10.1109/LGRS.2015.2452946-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

32
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

53
checked on Oct 26, 2024

Page view(s)

36
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.