Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6957
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lezki, Hazal | - |
dc.contributor.author | Öztürk, I. Ahu | - |
dc.contributor.author | Akpınar, M. Akif | - |
dc.contributor.author | Yücel, M. Kerim | - |
dc.contributor.author | Logoğlu, K. Berker | - |
dc.contributor.author | Erdem, Aykut | - |
dc.contributor.author | Erdem, Erkut | - |
dc.date.accessioned | 2021-09-11T15:44:31Z | - |
dc.date.available | 2021-09-11T15:44:31Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.citation | 15th European Conference on Computer Vision (ECCV) -- SEP 08-14, 2018 -- Munich, GERMANY | en_US |
dc.identifier.isbn | 978-3-030-11012-3; 978-3-030-11011-6 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.issn | 1611-3349 | - |
dc.identifier.uri | https://doi.org/10.1007/978-3-030-11012-3_8 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6957 | - |
dc.description.abstract | Moving object detection is an imperative task in computer vision, where it is primarily used for surveillance applications. With the increasing availability of low-altitude aerial vehicles, new challenges for moving object detection have surfaced, both for academia and industry. In this paper, we propose a new approach that can detect moving objects efficiently and handle parallax cases. By introducing sparse flow based parallax handling and downscale processing, we push the boundaries of real-time performance with 16 FPS on limited embedded resources (a five-fold improvement over existing baselines), while managing to perform comparably or even improve the state-of-the-art in two different datasets. We also present a roadmap for extending our approach to exploit multi-modal data in order to mitigate the need for parameter tuning. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer International Publishing Ag | en_US |
dc.relation.ispartof | Computer Vision - Eccv 2018 Workshops, Pt Ii | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Moving object detection | en_US |
dc.subject | Optical flow | en_US |
dc.subject | UAV | en_US |
dc.subject | Drones | en_US |
dc.subject | Embedded vision | en_US |
dc.subject | Real-time vision | en_US |
dc.title | Joint Exploitation of Features and Optical Flow for Real-Time Moving Object Detection on Drones | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | Lecture Notes in Computer Science | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 11130 | en_US |
dc.identifier.startpage | 100 | en_US |
dc.identifier.endpage | 116 | en_US |
dc.authorid | 0000-0002-6744-8614 | - |
dc.authorid | 0000-0002-6280-8422 | - |
dc.identifier.wos | WOS:000594380500008 | en_US |
dc.identifier.scopus | 2-s2.0-85061774580 | en_US |
dc.institutionauthor | Lezki, Hazal | - |
dc.identifier.doi | 10.1007/978-3-030-11012-3_8 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | 15th European Conference on Computer Vision (ECCV) | en_US |
dc.identifier.scopusquality | Q2 | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
2
checked on Oct 5, 2024
Page view(s)
58
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.