Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6906
Title: | Integrating Machine Learning Techniques Into Robust Data Enrichment Approach and Its Application To Gene Expression Data | Authors: | Erdoğdu, Utku Tan, Mehmet Alhajj, Reda Polat, Faruk Rokne, Jon Demetrick, Douglas |
Keywords: | gene expression data sample generation multiple perspectives learning HIMM hierarchical markov models genetic algorithms PBN probabilistic boolean networks |
Publisher: | Inderscience Enterprises Ltd | Abstract: | The availability of enough samples for effective analysis and knowledge discovery has been a challenge in the research community, especially in the area of gene expression data analysis. Thus, the approaches being developed for data analysis have mostly suffered from the lack of enough data to train and test the constructed models. We argue that the process of sample generation could be successfully automated by employing some sophisticated machine learning techniques. An automated sample generation framework could successfully complement the actual sample generation from real cases. This argument is validated in this paper by describing a framework that integrates multiple models (perspectives) for sample generation. We illustrate its applicability for producing new gene expression data samples, a highly demanding area that has not received attention. The three perspectives employed in the process are based on models that are not closely related. The independence eliminates the bias of having the produced approach covering only certain characteristics of the domain and leading to samples skewed towards one direction. The first model is based on the Probabilistic Boolean Network (PBN) representation of the gene regulatory network underlying the given gene expression data. The second model integrates Hierarchical Markov Model (HIMM) and the third model employs a genetic algorithm in the process. Each model learns as much as possible characteristics of the domain being analysed and tries to incorporate the learned characteristics in generating new samples. In other words, the models base their analysis on domain knowledge implicitly present in the data itself. The developed framework has been extensively tested by checking how the new samples complement the original samples. The produced results are very promising in showing the effectiveness, usefulness and applicability of the proposed multi-model framework. | URI: | https://doi.org/10.1504/IJDMB.2013.056090 https://hdl.handle.net/20.500.11851/6906 |
ISSN: | 1748-5673 1748-5681 |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
4
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
3
checked on Oct 5, 2024
Page view(s)
100
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.