Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6868
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:43:59Z-
dc.date.available2021-09-11T15:43:59Z-
dc.date.issued2007-
dc.identifier.issn0957-4174-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2006.08.005-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6868-
dc.description.abstractThis paper intends to an integrated view of implementing automated diagnostic systems for breast cancer detection. The major objective of the paper is to be a guide for the readers, who want to develop an automated decision support system for detection of breast cancer. Because of the importance of making the right decision, better classification procedures for breast cancer have been searched. The classification accuracies of different classifiers, namely multilayer perceptron neural network (MLPNN), combined neural network (CNN), probabilistic neural network (PNN), recurrent neural network (RNN) and support vector machine (SVM), which were trained on the attributes of each record in the Wisconsin breast cancer database, were compared. The purpose was to determine an optimum classification scheme with high diagnostic accuracy for this problem. This research demonstrated that the SVM achieved diagnostic accuracies which were higher than that of the other automated diagnostic systems. (c) 2006 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectautomated diagnostic systemsen_US
dc.subjectdiagnostic accuracyen_US
dc.subjectbreast cancer detectionen_US
dc.titleImplementing Automated Diagnostic Systems for Breast Cancer Detectionen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume33en_US
dc.identifier.issue4en_US
dc.identifier.startpage1054en_US
dc.identifier.endpage1062en_US
dc.identifier.wosWOS:000246315200023-
dc.identifier.scopus2-s2.0-33947653184-
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.eswa.2006.08.005-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

137
checked on Jan 4, 2025

WEB OF SCIENCETM
Citations

110
checked on Oct 5, 2024

Page view(s)

64
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.