Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6850
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMutlu, Büşra-
dc.contributor.authorMutlu, Merve-
dc.contributor.authorÖztoprak, Kasım-
dc.contributor.authorDoğdu, Erdoğan-
dc.date.accessioned2021-09-11T15:43:53Z-
dc.date.available2021-09-11T15:43:53Z-
dc.date.issued2016en_US
dc.identifier.citation4th IEEE International Conference on Big Data (Big Data) -- DEC 05-08, 2016 -- Washington, DCen_US
dc.identifier.isbn978-1-4673-9005-7-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6850-
dc.description.abstractTrolls in social media are 'malicious' users trying to propagate an opinion or distort the general perceptions. Identifying trolls in social media is a task of interest for many big data applications since data cannot be analyzed effectively without eliminating such users from the crowd. In this paper, we present a solution for troll detection and also the results of measuring terror awareness among social media users. We used Twitter platform only, and applied several machine learning techniques and big data methodologies. For machine learning we used k-Nearest Neighbour (kNN), Naive Bayes, and C4.5 decision tree algorithms. Hadoop/Mahout and Hadoop/Hive platforms were used for big data processing. Our tests show that C4.5 has a better performance on troll detection.en_US
dc.description.sponsorshipIEEE, IEEE Comp Soc, Natl Sci Fdn, Cisco, Huawei, Elsevier, Navigant, Johns Hopkins Whiting Sch Engnen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2016 IEEE International Conference On Big Data (Big Data)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTroll detectionen_US
dc.subjectkNNen_US
dc.subjectNaive Bayesen_US
dc.subjectC4.5en_US
dc.subjectterrorism awarenessen_US
dc.titleIdentifying Trolls and Determining Terror Awareness Level in Social Networks Using a Scalable Frameworken_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage1792en_US
dc.identifier.endpage1798en_US
dc.authorid0000-0001-5987-0164-
dc.identifier.wosWOS:000399115001103en_US
dc.identifier.scopus2-s2.0-85015206772en_US
dc.institutionauthorDoğdu, Erdoğan-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference4th IEEE International Conference on Big Data (Big Data)en_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

17
checked on Oct 5, 2024

Page view(s)

68
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.