Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6777
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelikyılmaz, Aslı-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:43:32Z-
dc.date.available2021-09-11T15:43:32Z-
dc.date.issued2008en_US
dc.identifier.citationAnnual Meeting of the North-American-Fuzzy-Information-Processing-Society -- MAY 19-22, 2008 -- New York, NYen_US
dc.identifier.isbn978-1-4244-2351-4-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6777-
dc.description.abstractA new type-2 fuzzy classifier function system is proposed for uncertainty modeling using genetic algorithms GT2FCF. Proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy classifier function systems induced by learning parameters, as well as fuzzy classifier functions. Hidden structures are captured with the implementation of improved fuzzy clustering. The optimum uncertainty interval of the type-2 fuzzy membership values are captured with a genetic learning algorithm. The results of the experiments show that the GT2FCF is comparable - if not superior- to well-known benchmark methods in terms of area under the receiver operating curve (AUC) performance measure.en_US
dc.description.sponsorshipN Amer Fuzzy Informat Proc Socen_US
dc.description.sponsorshipNational Science and Engineering Research Council - NSERC of CanadaNatural Sciences and Engineering Research Council of Canada (NSERC)en_US
dc.description.sponsorshipThis work is partially supported by National Science and Engineering Research Council - NSERC Grant of Canada.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2008 Annual Meeting of The North American Fuzzy Information Processing Society, Vols 1 And 2en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjecttype-2 fuzzy functionsen_US
dc.subjectclassificationen_US
dc.subjectgenetic algorithmsen_US
dc.titleGenetic Type-2 Fuzzy Classifier Functionsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.startpage109en_US
dc.identifier.endpage114en_US
dc.identifier.wosWOS:000258322800020en_US
dc.identifier.scopus2-s2.0-51149119743en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceAnnual Meeting of the North-American-Fuzzy-Information-Processing-Societyen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

52
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.