Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6764
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çelikyılmaz, Aslı | - |
dc.contributor.author | Türkşen, İsmail Burhan | - |
dc.date.accessioned | 2021-09-11T15:43:28Z | - |
dc.date.available | 2021-09-11T15:43:28Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.issn | 0020-0255 | - |
dc.identifier.issn | 1872-6291 | - |
dc.identifier.uri | https://doi.org/10.1016/j.ins.2007.06.022 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6764 | - |
dc.description.abstract | A new fuzzy system modeling (FSM) approach that identifies the fuzzy functions using support vector machines (SVM) is proposed. This new approach is structurally different from the fuzzy rule base approaches and fuzzy regression methods. It is a new alternate version of the earlier FSM with fuzzy functions approaches. SVM is applied to determine the support vectors for each fuzzy cluster obtained by fuzzy c-means (FCM) clustering algorithm. Original input variables, the membership values obtained from the FCM together with their transformations form a new augmented set of input variables. The performance of the proposed system modeling approach is compared to previous fuzzy functions approaches, standard SVM, LSE methods using an artificial sparse dataset and a real-life non-sparse dataset. The results indicate that the proposed fuzzy functions with support vector machines approach is a feasible and stable method for regression problems and results in higher performances than the classical statistical methods. (C) 2007 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Inc | en_US |
dc.relation.ispartof | Information Sciences | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | fuzzy system modeling | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | fuzzy functions | en_US |
dc.subject | support vector regression | en_US |
dc.subject | data analysis | en_US |
dc.title | Fuzzy Functions With Support Vector Machines | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Industrial Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 177 | en_US |
dc.identifier.issue | 23 | en_US |
dc.identifier.startpage | 5163 | en_US |
dc.identifier.endpage | 5177 | en_US |
dc.identifier.wos | WOS:000250285400004 | en_US |
dc.institutionauthor | Türkşen, İsmail Burhan | - |
dc.identifier.doi | 10.1016/j.ins.2007.06.022 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Endüstri Mühendisliği Bölümü / Department of Industrial Engineering WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
68
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
55
checked on Oct 5, 2024
Page view(s)
52
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.