Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6752
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeng, Peter-
dc.contributor.authorNagi, Mohamad-
dc.contributor.authorSair, Ömer-
dc.contributor.authorSuleiman, Iyad-
dc.contributor.authorQabaja, Ala-
dc.contributor.authorElSheikh, Abdallah M.-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2021-09-11T15:43:25Z-
dc.date.available2021-09-11T15:43:25Z-
dc.date.issued2011en_US
dc.identifier.citation12th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2011) -- SEP 07-09, 2011 -- Univ E Anglia, Norwich, UNITED KINGDOMen_US
dc.identifier.isbn978-3-642-23877-2-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6752-
dc.description.abstractThe major contribution of the work described in this paper could be articulated as a parameter free clustering approach that leads to appropriate distribution of the given data instances into the most convenient clusters. This goal is realized in several steps. First, we apply multi-objective genetic algorithm to determine some alternative clustering solutions that constitute the pareto-front. The result is a pool of the clusters reported by all the solutions. Then, we determine the homogeneity of each cluster in the pool to keep the most homogeneous clusters which may not be select from one solution because a solution which is favored the most by considering the multiple objectives might have some clusters which are less homogeneous compared to best clusters in other solutions. Finally, as a given data. instance may belong to more than one cluster in the solution set we reduce this membership to the cluster in which the instance is closest to the centroid. Many applications like gene expression data analysis are in need for such parameter free approach because the correctness of the post processing is directly affected by the outcome form the clustering process. We demonstrate the applicability and effectiveness of the proposed clustering approach by conducting experiments using two benchmark data sets.en_US
dc.description.sponsorshipIEEE Syst, Man & Cybernet Soc, Norwich Res Park, Univ E Anglia, SYS CONSULTING, CMPen_US
dc.description.sponsorshipScientific and Technical Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [TUBITAK EEEAG 109E241]en_US
dc.description.sponsorshipThis study was supported by Scientific and Technical Research Council of Turkey (Grant number TUBITAK EEEAG 109E241)en_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag Berlinen_US
dc.relation.ispartofIntelligent Data Engineering And Automated Learning - Ideal 2011en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmulti-objective genetic algorithmen_US
dc.subjectclusteringen_US
dc.subjectknowledge discoveryen_US
dc.subjectgene expression dataen_US
dc.titleFrom Alternative Clustering To Robust Clustering and Its Application To Gene Expression Dataen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesLecture Notes in Computer Scienceen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume6936en_US
dc.identifier.startpage421en_US
dc.identifier.endpage+en_US
dc.identifier.wosWOS:000306498500050en_US
dc.identifier.scopus2-s2.0-80053010980en_US
dc.institutionauthorŞair, Ömer-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference12th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2011)en_US
dc.identifier.scopusqualityQ2-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

36
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.