Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6665
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.contributor.authorBozer, Recep-
dc.date.accessioned2021-09-11T15:43:07Z-
dc.date.available2021-09-11T15:43:07Z-
dc.date.issued2012-
dc.identifier.citationConference on Complex Adaptive Systems -- NOV 14-16, 2012 -- Washington, DCen_US
dc.identifier.issn1877-0509-
dc.identifier.urihttps://doi.org/10.1016/j.procs.2012.09.070-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6665-
dc.description.abstractForest fires have environmental impacts that create economic problems as well as ecological damage. Developing a means to predict the possible size of a fire shortly after it first breaks out has the potential to guide proper resource allocation for improved fire control and was the main motivation of this research. In this study, the burned areas resulting from possible forest fires were estimated using historical forest fire records which contained parameters like geographical conditions of the existing environment, date and time when the fire broke out, meteorological data such as temperature, humidity and wind speed, and the type and number of trees in a unit area. The data was from the Department of Forestry in Turkey and contained 7,920 forest fire records from 2000 and 2009. The output from the estimation methods implemented in this work predicted the size of the area lost due to the fire and the corresponding fire size, i.e. big, medium, or small fire. Some of the estimation methods investigated were Multilayer Perceptron (MLP), Radial Basis Function Networks (RBFN), Support Vector Machines (SVM) and fuzzy logic. The results of these estimates are presented and compared to similar studies in literature.en_US
dc.description.sponsorshipMissouri Univ Sci & Technol, Lockheed Martin, Mocana, Tata Consultancy Serv, GAK3, Drexel Univ Online, Hark.comen_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofComplex Adaptive Systems 2012en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectForest fire loss estimationen_US
dc.subjectforest fire burned areaen_US
dc.subjectcomputational intelligenceen_US
dc.subjectartificial neural networksen_US
dc.subjectRadial Basis Functionen_US
dc.subjectMultilayer Perceptronen_US
dc.subjectSupport Vector Machinesen_US
dc.titleEstimation of the Burned Area in Forest Fires Using Computational Intelligence Techniquesen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesProcedia Computer Science-
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume12en_US
dc.identifier.startpage282en_US
dc.identifier.endpage287en_US
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000314992600044-
dc.identifier.scopus2-s2.0-84896979054-
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1016/j.procs.2012.09.070-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceConference on Complex Adaptive Systemsen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.

SCOPUSTM   
Citations

24
checked on Jan 4, 2025

WEB OF SCIENCETM
Citations

28
checked on Jan 4, 2025

Page view(s)

86
checked on Jan 6, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.