Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6663
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Mustafa-
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:43:06Z-
dc.date.available2021-09-11T15:43:06Z-
dc.date.issued2008en_US
dc.identifier.issn0164-0313-
dc.identifier.issn1572-9591-
dc.identifier.urihttps://doi.org/10.1007/s10894-008-9135-4-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6663-
dc.description.abstractArtificial neural networks (ANNs) have recently been utilized in the nuclear technology applications since they are fast, precise and flexible vehicles to modeling, simulation and optimization. This paper presents a new approach based on multilayer perceptron neural networks (MLPNNs) for the estimation of some important neutronic parameters (net Pu-239 production, tritium breeding ratio, cumulative fissile fuel enrichment, and fission rate) of a high power density fusion-fission (hybrid) reactor using light water reactor (LWR) spent fuel. A comparison of the results obtained by the MLPNNs and those found by using the code (Scale 4.3) was carried out. The results pointed out that the MLPNNs trained with least mean squares (LMS) algorithm could provide an accurate computation of the main neutronic parameters for the high power density reactor.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Fusion Energyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectneutronic parametersen_US
dc.subjecthybrid reactoren_US
dc.subjectmultilayer perceptron neural networks (MLPNNs)en_US
dc.subjectleast mean squares (LMS) algorithmen_US
dc.titleEstimation of Neutronic Performance of a High Power Density Hybrid Reactor by Multilayer Perceptron Neural Networksen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume27en_US
dc.identifier.issue4en_US
dc.identifier.startpage278en_US
dc.identifier.endpage284en_US
dc.authorid0000-0002-7809-0283-
dc.identifier.wosWOS:000259671800007en_US
dc.identifier.scopus2-s2.0-54849204600en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1007/s10894-008-9135-4-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

3
checked on Oct 5, 2024

Page view(s)

50
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.