Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6662
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.contributor.authorYüksel, H. Ertan-
dc.date.accessioned2021-09-11T15:43:06Z-
dc.date.available2021-09-11T15:43:06Z-
dc.date.issued2011en_US
dc.identifier.citationConference of the Complex Adaptive Systems on Responding to Continuous Global Change in Systems Needs -- OCT 30-NOV 02, 2011 -- Chicago, ILen_US
dc.identifier.issn1877-0509-
dc.identifier.urihttps://doi.org/10.1016/j.procs.2011.08.091-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6662-
dc.description.abstractEstimation of flow properties is essential in terms of the efficient usage of resources in drilling operations. Meanwhile, hydraulic characteristics of two phase fluids in annular geometries are not studied thoroughly. In this study, the flow patterns and liquid holdup characteristics of liquid-gas flow is analyzed using experimental data obtained from an eccentric pipe configuration. A high speed digital camera is used for recording the flow; in addition liquid holdup values are calculated using digital image processing techniques instead of empirical correlations or mechanistic measurements. At the same time through the acquired images, corresponding flow patterns are observed. Using the acquired images, estimation models are developed for air-water flow in horizontal eccentric annulus. This is conducted by using computational intelligence rather than conventional mechanistic models. The chosen models are nearest neighbor, backpropagation, decision trees and SVM. Input attributes are superficial Reynolds numbers for both liquid and gas phase. The output is the classified flow pattern and the liquid holdup value. SVM model turned out to he the hest estimator for flow pattern identification process (%92.49 success rate for classifying 7 different flow patterns) whereas regression decision tree had the best performance for liquid holdup determination (RMSE of 0.0777). (C) 2011 Published by Elsevier B.V.en_US
dc.description.sponsorshipMissouri Univ Sci & Technol, Lockheed Martin, Univ Texas, Res Inst Mfg & Engn Syst (RIMES), Texas A&M Univen_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofComplex Adaptive Systemsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjecttwo phase flowen_US
dc.subjectmultiphase flowen_US
dc.subjectimage processingen_US
dc.subjectcomputational intelligenceen_US
dc.subjectartificial neural networksen_US
dc.subjectdecision treesen_US
dc.subjectSVMen_US
dc.titleEstimation of Multiphase Flow Properties Using Computational Intelligence Modelsen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesProcedia Computer Scienceen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume6en_US
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000299124600076en_US
dc.identifier.scopus2-s2.0-84856429777en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1016/j.procs.2011.08.091-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceConference of the Complex Adaptive Systems on Responding to Continuous Global Change in Systems Needsen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

4
checked on Oct 5, 2024

Page view(s)

86
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.