Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6652
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelikyılmaz, Aslı-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:43:04Z-
dc.date.available2021-09-11T15:43:04Z-
dc.date.issued2007en_US
dc.identifier.citationAnnual Meeting of the North-American-Fuzzy-Information-Processing-Society -- JUN 24-27, 2007 -- San Diego, CAen_US
dc.identifier.isbn978-1-4244-1213-6-
dc.identifier.urihttps://doi.org/10.1109/NAFIPS.2007.383826-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6652-
dc.description.abstractA new Fuzzy System Modeling (FSM) approach based on Improved Fuzzy Functions using Discrete Interval Type 2 Fuzzy Sets is presented. The new method is proposed as an alternate learning and reasoning schema to Type 1 and Type 2 FSM with Fuzzy Rule Base (FRB) approaches and enhances Type 2 FSM by reducing complexity and increasing prediction performance. Structure identification of the new approach is based on a supervised Improved Fuzzy Clustering (IFC) method with a dual optimization algorithm, which yields improved membership values. The merit of the proposed Type 2 FSM is that uncertain information on natural grouping of data samples, i.e., membership values, is utilized as additional predictors while structuring fuzzy functions. The uncertainty in selection of the learning parameters are captured by identifying two separate features: executing IFC method with varying levels of fuzziness values, m, and collection of different fuzzy function structures. It is shown with an empirical study that the new Type 2 FSM approach is superior in comparison to earlier Type 1 and Type 2 FSMs in terms of robustness and error reduction.en_US
dc.description.sponsorshipN Amer Fuzzy Informat Proc Soc, IEEEen_US
dc.description.sponsorshipNSERCNatural Sciences and Engineering Research Council of Canada (NSERC); OGSSTen_US
dc.description.sponsorshipThis work is partially supported by NSERC and OGSST Grants.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofNafips 2007 - 2007 Annual Meeting of The North American Fuzzy Information Processing Societyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleEnhanced Type 2 Fuzzy System Models With Improved Fuzzy Functionsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.startpage140en_US
dc.identifier.endpage+en_US
dc.identifier.wosWOS:000248517100026en_US
dc.identifier.scopus2-s2.0-35148836676en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1109/NAFIPS.2007.383826-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceAnnual Meeting of the North-American-Fuzzy-Information-Processing-Societyen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

2
checked on Sep 21, 2024

Page view(s)

56
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.