Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDemirci, Muhammed Fatih-
dc.contributor.authorOsmanlıoğlu, Yusuf-
dc.contributor.authorShokoufandeh, Ali-
dc.contributor.authorDickinson, Sven-
dc.date.accessioned2021-09-11T15:42:58Z-
dc.date.available2021-09-11T15:42:58Z-
dc.date.issued2011en_US
dc.identifier.issn1077-3142-
dc.identifier.issn1090-235X-
dc.identifier.urihttps://doi.org/10.1016/j.cviu.2010.12.012-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6615-
dc.description.abstractMatching configurations of image features, represented as attributed graphs, to configurations of model features is an important component in many object recognition algorithms. Noisy segmentation of images and imprecise feature detection may lead to graphs that represent visually similar configurations that do not admit an injective matching. In previous work, we presented a framework which computed an explicit many-to-many vertex correspondence between attributed graphs of features configurations. The framework utilized a low distortion embedding function to map the nodes of the graphs into point sets in a vector space. The Earth Movers Distance (EMD) algorithm was then used to match the resulting points, with the computed flows specifying the many-to-many vertex correspondences between the input graphs. In this paper, we will present a distortion-free embedding, which represents input graphs as metric trees and then embeds them isometrically in the geometric space under the I, norm. This not only improves the representational power of graphs in the geometric space, it also reduces the complexity of the previous work using recent developments in computing EMD under l. Empirical evaluation of the algorithm on a set of recognition trials, including a comparison with previous approaches, demonstrates the effectiveness and robustness of the proposed framework. (C) 2011 Elsevier Inc. All rights reserved.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [109E183]; National Science FoundationNational Science Foundation (NSF) [0803670]; IIS Division and Office of Naval Research [ONR-N000140410363]; NSERC CanadaNatural Sciences and Engineering Research Council of Canada (NSERC)en_US
dc.description.sponsorshipThe work of Fatih Demirci is supported in part by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant 109E183. All Shokoufandeh gratefully acknowledges the support from the National Science Foundation Grant #0803670 under the IIS Division and Office of Naval Research Grant ONR-N000140410363. Sven Dickinson acknowledges the support of NSERC Canada.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofComputer Vision And Image Understandingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDistortion-free metric embeddingen_US
dc.subjectEarth Mover's Distanceen_US
dc.subjectMany-to-many matchingen_US
dc.subjectObject recognitionen_US
dc.titleEfficient Many-To Feature Matching Under the L(1) Normen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume115en_US
dc.identifier.issue7en_US
dc.identifier.startpage976en_US
dc.identifier.endpage983en_US
dc.authorid0000-0002-9997-9479-
dc.identifier.wosWOS:000291507100007en_US
dc.identifier.scopus2-s2.0-79956151093en_US
dc.institutionauthorDemirci, Muhammed Fatih-
dc.identifier.doi10.1016/j.cviu.2010.12.012-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

23
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

17
checked on Nov 9, 2024

Page view(s)

134
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.