Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6578
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüler, İnan-
dc.contributor.authorÜbeyli, Derya Elif-
dc.date.accessioned2021-09-11T15:42:54Z-
dc.date.available2021-09-11T15:42:54Z-
dc.date.issued2005en_US
dc.identifier.issn0031-3203-
dc.identifier.urihttps://doi.org/10.1016/j.patcog.2004.06.009-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6578-
dc.description.abstractThis paper illustrates the use of combined neural network model to guide model selection for classification of electrocardiogram (ECG) beats. The ECG signals were decomposed into time-frequency representations using discrete wavelet transform and statistical features were calculated to depict their distribution. The first level networks were implemented for ECG beats classification using the statistical features as inputs. To improve diagnostic accuracy, the second level networks were trained using the outputs of the first level networks as input data. Four types of ECG beats (normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat, atrial fibrillation beat) obtained from the Physiobank database were classified with the accuracy of 96.94% by the combined neural network. The combined neural network model achieved accuracy rates which were higher than that of the stand-alone neural network model. (C) 2004 Published by Elsevier Ltd on behalf of Pattern Recognition Society.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofPattern Recognitionen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcombined neural network modelen_US
dc.subjectecg beats classificationen_US
dc.subjectdiagnostic accuracyen_US
dc.subjectdiscrete wavelet transformen_US
dc.titleEcg Beat Classifier Designed by Combined Neural Network Modelen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume38en_US
dc.identifier.issue2en_US
dc.identifier.startpage199en_US
dc.identifier.endpage208en_US
dc.identifier.wosWOS:000225349600004en_US
dc.identifier.scopus2-s2.0-6444240833en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.patcog.2004.06.009-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

272
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

254
checked on Sep 21, 2024

Page view(s)

78
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.