Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6517
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.contributor.authorGüler, İnan-
dc.date.accessioned2021-09-11T15:37:05Z-
dc.date.available2021-09-11T15:37:05Z-
dc.date.issued2004en_US
dc.identifier.issn0952-1976-
dc.identifier.issn1873-6769-
dc.identifier.urihttps://doi.org/10.1016/S0952-1976(04)00082-X-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6517-
dc.description.abstractIn this study, a new approach based on the consideration that electrocardiogram (ECG) signals are chaotic signals was presented for detection of electrocardiographic changes in patients with partial epilepsy. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electrocardiographic changes in patients with partial epilepsy. Two types of ECG beats (normal and partial epilepsy) were obtained from the MIT-BIH database. The computed Lyapunov exponents of the ECG signals were used as inputs of the MLPNNs trained with backpropagation, delta- bar-delta, extended delta-bar-delta, quick propagation, and Levenberg-Marquardt algorithms. The performances of the MLPNN classifiers were evaluated in terms of training performance and classification accuracies. Receiver operating characteristic (ROC) curves were used to assess the performance of the detection process. The results confirmed that the proposed MLPNN trained with the Levenberg-Marquardt algorithm has potential in detecting the electrocardiographic changes in patients with partial epilepsy. (C) 2004 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofEngineering Applications of Artificial Intelligenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectelectrocardiographic changesen_US
dc.subjectpartial epilepsyen_US
dc.subjectchaotic signalen_US
dc.subjectLyapunov exponentsen_US
dc.subjectmultilayer perceptron neural network (MLPNN)en_US
dc.subjecttraining algorithmsen_US
dc.subjectMevenberg-Marquardt algorithmen_US
dc.titleDetection of Electrocardiographic Changes in Partial Epileptic Patients Using Lyapunov Exponents With Multilayer Perceptron Neural Networksen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume17en_US
dc.identifier.issue6en_US
dc.identifier.startpage567en_US
dc.identifier.endpage576en_US
dc.identifier.wosWOS:000224909500001en_US
dc.identifier.scopus2-s2.0-5444236357en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/S0952-1976(04)00082-X-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

29
checked on Sep 21, 2024

Page view(s)

92
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.