Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6514
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüler, İnan-
dc.contributor.authorÜbeyli, Derya Elif-
dc.date.accessioned2021-09-11T15:37:03Z-
dc.date.available2021-09-11T15:37:03Z-
dc.date.issued2004en_US
dc.identifier.issn1350-4533-
dc.identifier.urihttps://doi.org/10.1016/j.medengphy.2004.06.007-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6514-
dc.description.abstractThe new method presented in this study was directly based oil the consideration that internal carotid arterial Doppler signals are chaotic signals. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Multilayer perceptron neural network (MLPNN) architecture was formulated and used as a basis for detecting variabilities such as stenosis and occlusion in the physical state of internal carotid arterial Doppler signals. The computed Lyapunov exponents of the internal carotid arterial Doppler signals were used as inputs of the MLPNN. Receiver operating characteristic (ROC) curve was used to assess the performance of the detection process. The internal carotid arterial Doppler signals were classified with the accuracy varying from 94.87% to 97.44%. The results confirmed that the proposed MLPNN trained with Levenberg-Marquardt algorithm has potential in detecting stenosis and occlusion in internal carotid arteries. (C) 2004 IPEM. Published by Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofMedical Engineering & Physicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDoppler signalsen_US
dc.subjectinternal carotid artery stenosisen_US
dc.subjectinternal carotid artery occlusionen_US
dc.subjectchaotic signalen_US
dc.subjectLyapunov exponentsen_US
dc.subjectmultilayer perceptron neural network (MLPNN)en_US
dc.subjectLevenberg-Marquardt algorithmen_US
dc.titleDetecting Variability of Internal Carotid Arterial Doppler Signals by Lyapunov Exponentsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume26en_US
dc.identifier.issue9en_US
dc.identifier.startpage763en_US
dc.identifier.endpage771en_US
dc.identifier.wosWOS:000225749600008en_US
dc.identifier.scopus2-s2.0-9644262694en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid15564113en_US
dc.identifier.doi10.1016/j.medengphy.2004.06.007-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

19
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

16
checked on Sep 21, 2024

Page view(s)

90
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.