Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6513
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:37:03Z-
dc.date.available2021-09-11T15:37:03Z-
dc.date.issued2009-
dc.identifier.issn0941-0643-
dc.identifier.urihttps://doi.org/10.1007/s00521-008-0229-8-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6513-
dc.description.abstractAn approach based on the consideration that electrocardiogram (ECG) signals are chaotic signals was presented for automated diagnosis of electrocardiographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of variabilities of ECG signals. Four types of ECG beats (normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat, atrial fibrillation beat) obtained from the Physiobank database were classified. The computed Lyapunov exponents of the ECG signals were used as inputs of the MLPNNs trained with backpropagation, delta-bar-delta, extended delta-bar-delta, quick propagation, and Levenberg-Marquardt algorithms. The performances of the MLPNN classifiers were evaluated in terms of classification accuracies. The results confirmed that the MLPNN trained with the Levenberg-Marquardt algorithm has potential in detecting the variabilities of the ECG signals (total classification accuracy was 95.00%).en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofNeural Computing & Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectrocardiogram signalsen_US
dc.subjectChaotic signalen_US
dc.subjectLyapunov exponentsen_US
dc.subjectMultilayer perceptron neural networken_US
dc.subjectTraining algorithmsen_US
dc.subjectLevenberg-Marquardt algorithmen_US
dc.titleDetecting Variabilities of Ecg Signals by Lyapunov Exponentsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume18en_US
dc.identifier.issue7en_US
dc.identifier.startpage653en_US
dc.identifier.endpage662en_US
dc.identifier.wosWOS:000269914300001-
dc.identifier.scopus2-s2.0-70350155723-
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1007/s00521-008-0229-8-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Jan 4, 2025

WEB OF SCIENCETM
Citations

11
checked on Sep 21, 2024

Page view(s)

38
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.