Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6511
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖgüt, Hulisi-
dc.contributor.authorDoğanay, M. Mete-
dc.contributor.authorAktaş, Ramazan-
dc.date.accessioned2021-09-11T15:37:02Z-
dc.date.available2021-09-11T15:37:02Z-
dc.date.issued2009en_US
dc.identifier.issn0957-4174-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2009.03.065-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6511-
dc.description.abstractThis paper aims to develop methods that are capable of detecting manipulation in the Istanbul Stock Exchange. We take the difference between manipulated stock's and index's average daily return, average daily change in trading volume and average daily volatility and used these statistics as explanatory variables. The data in post-manipulation and pre-manipulation periods are used as non-manipulated instances while the data in the manipulation period are used as manipulated instances. Test performance of classification accuracy, sensitivity and specificity statistics for Artificial Neural Networks (ANN) and Support Vector Machine (SVM) are compared with the results of discriminant analysis and logistics regression (logit). We found that the data mining techniques (ANN and SVM) are better suited to detect stock-price manipulation than multivariate statistical techniques (discriminant analysis, logistics regression) as the performances of the data mining techniques in terms of total classification accuracy and sensitivity statistics are better than those of multivariate techniques. We also found that unit change in difference between average daily return of manipulated stock and the index has the largest effect while unit change in difference between average daily change in trading volume of manipulated stock and index has the least effect on multivariate classifiers' decision functions. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectStock marketen_US
dc.subjectManipulationen_US
dc.subjectData mining techniquesen_US
dc.subjectMultivariate statistical techniquesen_US
dc.titleDetecting Stock-Price Manipulation in an Emerging Market: the Case of Turkeyen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Economics and Administrative Sciences, Department of Managementen_US
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, İşletme Bölümütr_TR
dc.identifier.volume36en_US
dc.identifier.issue9en_US
dc.identifier.startpage11944en_US
dc.identifier.endpage11949en_US
dc.identifier.wosWOS:000268270600060en_US
dc.identifier.scopus2-s2.0-67349175047en_US
dc.institutionauthorAktaş, Ramazan-
dc.identifier.doi10.1016/j.eswa.2009.03.065-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept04.03. Department of Management-
Appears in Collections:İşletme Bölümü / Department of Management
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

54
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

63
checked on Sep 21, 2024

Page view(s)

296
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.