Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6475
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Erol, Barış | - |
dc.contributor.author | Çağlıyan, Bahri | - |
dc.contributor.author | Tekeli, Bürkan | - |
dc.contributor.author | Gürbüz, Sevgi Zübeyde | - |
dc.date.accessioned | 2021-09-11T15:36:46Z | - |
dc.date.available | 2021-09-11T15:36:46Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.citation | 23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEY | en_US |
dc.identifier.isbn | 978-1-4673-7386-9 | - |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6475 | - |
dc.description.abstract | A vast number of features have been proposed over the years for classification of radar micro-Doppler signatures. However, the degree to which a feature may contribute in discriminating between classes depends upon a variety of operational considerations, such as antenna-target aspect angle, signal-to-noise ratio (SNR), and dwell time. Moreover, utilization of all features in every circumstance does not necessarily ensure optimal classification performance. Oftentimes a well-selected subset of robust features yield better results. In this work, the variance of micro-Doppler feature estimates are examined under a variety of operational conditions and used to select feature subsets. The classification performance of data-dependent feature subsets are compared to that attained without any feature selection. Results show that data-dependent feature selection yields higher correct classification rates over a wider range of operational situations. | en_US |
dc.description.sponsorship | Dept Comp Engn & Elect & Elect Engn, Elect & Elect Engn, Bilkent Univ | en_US |
dc.language.iso | tr | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2015 23Rd Signal Processing And Communications Applications Conference (Siu) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Micro-Doppler signatures | en_US |
dc.subject | feature selection | en_US |
dc.subject | human acticity classification | en_US |
dc.title | Data-Dependent Micro-Doppler Feature Selection | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 1566 | en_US |
dc.identifier.endpage | 1569 | en_US |
dc.authorid | 0000-0002-6977-8801 | - |
dc.identifier.wos | WOS:000380500900372 | en_US |
dc.identifier.scopus | 2-s2.0-84939185876 | en_US |
dc.institutionauthor | Gürbüz, Sevgi Zübeyde | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | 23nd Signal Processing and Communications Applications Conference (SIU) | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | tr | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.