Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6475
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErol, Barış-
dc.contributor.authorÇağlıyan, Bahri-
dc.contributor.authorTekeli, Bürkan-
dc.contributor.authorGürbüz, Sevgi Zübeyde-
dc.date.accessioned2021-09-11T15:36:46Z-
dc.date.available2021-09-11T15:36:46Z-
dc.date.issued2015en_US
dc.identifier.citation23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEYen_US
dc.identifier.isbn978-1-4673-7386-9-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6475-
dc.description.abstractA vast number of features have been proposed over the years for classification of radar micro-Doppler signatures. However, the degree to which a feature may contribute in discriminating between classes depends upon a variety of operational considerations, such as antenna-target aspect angle, signal-to-noise ratio (SNR), and dwell time. Moreover, utilization of all features in every circumstance does not necessarily ensure optimal classification performance. Oftentimes a well-selected subset of robust features yield better results. In this work, the variance of micro-Doppler feature estimates are examined under a variety of operational conditions and used to select feature subsets. The classification performance of data-dependent feature subsets are compared to that attained without any feature selection. Results show that data-dependent feature selection yields higher correct classification rates over a wider range of operational situations.en_US
dc.description.sponsorshipDept Comp Engn & Elect & Elect Engn, Elect & Elect Engn, Bilkent Univen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2015 23Rd Signal Processing And Communications Applications Conference (Siu)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMicro-Doppler signaturesen_US
dc.subjectfeature selectionen_US
dc.subjecthuman acticity classificationen_US
dc.titleData-Dependent Micro-Doppler Feature Selectionen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conferenceen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.startpage1566en_US
dc.identifier.endpage1569en_US
dc.authorid0000-0002-6977-8801-
dc.identifier.wosWOS:000380500900372en_US
dc.identifier.scopus2-s2.0-84939185876en_US
dc.institutionauthorGürbüz, Sevgi Zübeyde-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference23nd Signal Processing and Communications Applications Conference (SIU)en_US
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

58
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.