Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6472
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTang, Xulong-
dc.contributor.authorKışlal, Orhan-
dc.contributor.authorKandemir, Mahmut-
dc.contributor.authorKaraköy, Mustafa-
dc.date.accessioned2021-09-11T15:36:45Z-
dc.date.available2021-09-11T15:36:45Z-
dc.date.issued2017en_US
dc.identifier.citation50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) -- OCT 14-18, 2017 -- Cambridge, MAen_US
dc.identifier.isbn978-1-4503-4952-9-
dc.identifier.urihttps://doi.org/10.1145/3123939.3123954-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6472-
dc.description.abstractData access costs dominate the execution times of most parallel applications and they are expected to be even more important in the future. To address this, recent research has focused on Near Data Processing (NDP) as a new paradigm that tries to bring computation to data, instead of bringing data to computation (which is the norm in conventional computing). This paper explores the potential of compiler support in exploiting NDP in the context of emerging manycore systems. To that end, we propose a novel compiler algorithm that partitions the computations in a given loop nest into subcomputations and schedules the resulting subcomputations on different cores with the goal of reducing the distance-to-data on the on-chip network. An important characteristic of our approach is that it exploits NDP while taking advantage of data locality. Our experiments with 12 multithreaded applications running on a state-of-the-art commercial manycore system indicate that the proposed compiler-based approach significantly reduces data movements on the on-chip network by taking advantage of NDP, and these benefits lead to an average execution time improvement of 18.4%.en_US
dc.description.sponsorshipIEEE, ACM, ACM SIGMICRO, CAVIUM, ORACLE, QUALCOMM, ARM, Intel, AMD, HUAWEI, IBM, Microsoft, Facebook, VMware Res, Mediateken_US
dc.description.sponsorshipNSFNational Science Foundation (NSF) [1205618, 1213052, 1212962, 1302225, 1302557, 1313560, 1320478, 1320531, 1409095, 1409723, 1439021, 1439057, 1526750, 1629129, 1629915]; IntelIntel Corporationen_US
dc.description.sponsorshipWe thank Prof. Simone Campanoni for his feedback and comments on the paper. We also thank the anonymous reviewers for their feedback. This research is supported in part by NSF grants #1205618, #1213052, #1212962, #1302225, #1302557, #1313560, #1320478, #1320531, #1409095, #1409723, #1439021, #1439057, #1526750, #1629129 and #1629915, and a grant from Intel.en_US
dc.language.isoenen_US
dc.publisherAssoc Computing Machineryen_US
dc.relation.ispartof50Th Annual IEEE/Acm International Symposium On Microarchitecture (Micro)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMulticore Architecturesen_US
dc.subjectNear-Data Computingen_US
dc.subjectCompileren_US
dc.titleData Movement Aware Computation Partitioningen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage730en_US
dc.identifier.endpage744en_US
dc.identifier.wosWOS:000455679300055en_US
dc.identifier.scopus2-s2.0-85034078669en_US
dc.institutionauthorKaraköy, Mustafa-
dc.identifier.doi10.1145/3123939.3123954-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)en_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

27
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

23
checked on Aug 31, 2024

Page view(s)

84
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.