Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6425
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gürbüz, Ali Cafer | - |
dc.contributor.author | McClellan, James H. | - |
dc.contributor.author | Scott, Waymond R., Jr. | - |
dc.date.accessioned | 2021-09-11T15:36:26Z | - |
dc.date.available | 2021-09-11T15:36:26Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.issn | 1051-2004 | - |
dc.identifier.issn | 1095-4333 | - |
dc.identifier.uri | https://doi.org/10.1016/j.dsp.2010.11.003 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6425 | - |
dc.description.abstract | Feature detection in sensing problems usually involves two processing stages. First, the raw data collected by a sensor, such as a Ground Penetrating Radar (GPR), is inverted to form an image of the subsurface area. Second, the image is searched for features like lines using an algorithm such as the Hough Transform (HT), which converts the problem of finding spatially spread patterns in the image space to detecting sparse peaks in the HT parameter space. This paper exploits the sparsity of features to combine the two stages into one direct processing step using Compressive Sensing (CS). The CS framework finds the HT parameters directly from the raw sensor measurements without having to construct an image of the sensed media. In addition to skipping the image formation step, CS processing can be done with a minimal number of raw sensor measurements, which decreases the data acquisition cost. The utility of this CS-based method is demonstrated for finding buried linear structures in both simulated and experimental GPR data. (C) 2010 Elsevier Inc. All rights reserved. | en_US |
dc.description.sponsorship | ARO-MURIMURI [DAAD19-02-1-0252] | en_US |
dc.description.sponsorship | This work supported by an ARO-MURI grant: "Multi-Modal Inverse Scattering for Detection and Classification of General Concealed Targets", under contract number DAAD19-02-1-0252. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Academic Press Inc Elsevier Science | en_US |
dc.relation.ispartof | Digital Signal Processing | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Compressed sensing | en_US |
dc.subject | Line detection | en_US |
dc.subject | GPR | en_US |
dc.subject | Subsurface imaging | en_US |
dc.subject | Compressive feature extraction | en_US |
dc.title | Compressive Sensing of Underground Structures Using Gpr | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 22 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 66 | en_US |
dc.identifier.endpage | 73 | en_US |
dc.authorid | 0000-0001-8923-0299 | - |
dc.authorid | 0000-0001-8923-0299 | - |
dc.identifier.wos | WOS:000297663200006 | en_US |
dc.identifier.scopus | 2-s2.0-81555207188 | en_US |
dc.institutionauthor | Gürbüz, Ali Cafer | - |
dc.identifier.doi | 10.1016/j.dsp.2010.11.003 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
19
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
17
checked on Aug 31, 2024
Page view(s)
62
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.