Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6410
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTuğci, Recep-
dc.contributor.authorÇelen, V. Burak A.-
dc.contributor.authorÖzbayoğlu, Murat-
dc.date.accessioned2021-09-11T15:36:20Z-
dc.date.available2021-09-11T15:36:20Z-
dc.date.issued2013en_US
dc.identifier.citation21st Signal Processing and Communications Applications Conference (SIU) -- APR 24-26, 2013 -- CYPRUSen_US
dc.identifier.isbn978-1-4673-5563-6; 978-1-4673-5562-9-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6410-
dc.description.abstractUnstable machine cutting causes chatter and reduces quality of the production. Therefore it must be detected. Several techniques have been presented for this reason. The aim of this study is to determine the data, features and classifiers which fit on chatter detection. In order to detect chatter; acoustic emission and vibration data are collected, several features are generated which belong to time and frequency domains. Then the best features are chosen via k- means clustering, support vector machines, feed forward back propagation neural networks and perceptron classifiers. The performance of the system is analyzed. As results of the study, the best data, features and classifiers are chosen for the chatter detection.en_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2013 21St Signal Processing And Communications Applications Conference (Siu)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChatter detectionen_US
dc.subjectPattern Recognitionen_US
dc.subjectSupport Vector Machinesen_US
dc.subjectNeural Networksen_US
dc.subjectPerceptronen_US
dc.titleComparison of Classifiers for Chatter Detectionen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conferenceen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000325005300141en_US
dc.identifier.scopus2-s2.0-84880884928en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference21st Signal Processing and Communications Applications Conference (SIU)en_US
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

50
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.