Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6410
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tuğci, Recep | - |
dc.contributor.author | Çelen, V. Burak A. | - |
dc.contributor.author | Özbayoğlu, Murat | - |
dc.date.accessioned | 2021-09-11T15:36:20Z | - |
dc.date.available | 2021-09-11T15:36:20Z | - |
dc.date.issued | 2013 | en_US |
dc.identifier.citation | 21st Signal Processing and Communications Applications Conference (SIU) -- APR 24-26, 2013 -- CYPRUS | en_US |
dc.identifier.isbn | 978-1-4673-5563-6; 978-1-4673-5562-9 | - |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6410 | - |
dc.description.abstract | Unstable machine cutting causes chatter and reduces quality of the production. Therefore it must be detected. Several techniques have been presented for this reason. The aim of this study is to determine the data, features and classifiers which fit on chatter detection. In order to detect chatter; acoustic emission and vibration data are collected, several features are generated which belong to time and frequency domains. Then the best features are chosen via k- means clustering, support vector machines, feed forward back propagation neural networks and perceptron classifiers. The performance of the system is analyzed. As results of the study, the best data, features and classifiers are chosen for the chatter detection. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2013 21St Signal Processing And Communications Applications Conference (Siu) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Chatter detection | en_US |
dc.subject | Pattern Recognition | en_US |
dc.subject | Support Vector Machines | en_US |
dc.subject | Neural Networks | en_US |
dc.subject | Perceptron | en_US |
dc.title | Comparison of Classifiers for Chatter Detection | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.authorid | 0000-0001-7998-5735 | - |
dc.identifier.wos | WOS:000325005300141 | en_US |
dc.identifier.scopus | 2-s2.0-84880884928 | en_US |
dc.institutionauthor | Özbayoğlu, Ahmet Murat | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | 21st Signal Processing and Communications Applications Conference (SIU) | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | tr | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.