Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6400
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzyer, Tansel-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2021-09-11T15:36:16Z-
dc.date.available2021-09-11T15:36:16Z-
dc.date.issued2006en_US
dc.identifier.citation7th International Conference on Fuzzy Logic and Intelligent Technologies in Nuclear Science -- AUG 29-31, 2006 -- Genoa, ITALYen_US
dc.identifier.isbn981-256-690-2-
dc.identifier.urihttps://doi.org/10.1142/9789812774118_0030-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6400-
dc.description.abstractIn this study, we present a clustering approach that automatically determines the number of clusters before starting the actual clustering process. This is achieved by first running a multi-objective genetic algorithm on a sample of the given dataset to find the set of alternative solutions for a given range. Then, we apply cluster validity indexes to find the most appropriate number of clusters. Finally, we run CURE to do the actual clustering by feeding the determined number of clusters as input. The reported test results demonstrate the applicability and effectiveness of the proposed approach.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofApplied Artificial Intelligenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleCombining Validity Indexes and Multi-Objective Optimization Based Clusteringen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage193en_US
dc.identifier.endpage+en_US
dc.identifier.wosWOS:000239525200030en_US
dc.identifier.scopus2-s2.0-84862591800en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.doi10.1142/9789812774118_0030-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference7th International Conference on Fuzzy Logic and Intelligent Technologies in Nuclear Scienceen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Dec 21, 2024

Page view(s)

76
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.