Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6397
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:36:15Z-
dc.date.available2021-09-11T15:36:15Z-
dc.date.issued2009-
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2008.06.002-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6397-
dc.description.abstractThis paper illustrates the use of combined neural networks (CNNs) model to guide model selection for diagnosis of the erythemato-squamous diseases. The multilayer perceptron neural networks (MLPNNs) were also tested and benchmarked for their performance on the diagnosis of the erythemato-squamous diseases. The domain contained records of patients with known diagnosis. Given a training set of such records, the classifiers learned how to differentiate a new case in the domain. The first level networks were used to detect the six erythemato-squamous diseases when 34 features defining six disease indications were used as inputs. To improve diagnostic accuracy, the second level networks were trained using the outputs of the first level networks as input data. The CNN model achieved accuracy rates which were higher than that of the stand-alone neural network model (MLPNN). (C) 2008 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCombined neural network (CNN)en_US
dc.subjectErythemato-squamous diseasesen_US
dc.subjectDiagnostic accuracyen_US
dc.titleCombined Neural Networks for Diagnosis of Erythemato-Squamous Diseasesen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume36en_US
dc.identifier.issue3en_US
dc.identifier.startpage5107en_US
dc.identifier.endpage5112en_US
dc.identifier.wosWOS:000263584100114-
dc.identifier.scopus2-s2.0-58349112742-
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.eswa.2008.06.002-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

38
checked on Jan 11, 2025

WEB OF SCIENCETM
Citations

28
checked on Jan 11, 2025

Page view(s)

60
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.