Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6381
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTüzüner, Aslan Berk-
dc.contributor.authorEroğul, Osman-
dc.contributor.authorAtaç, Gökçe Kaan-
dc.contributor.authorEr, Hale Çolakoğlu-
dc.date.accessioned2021-09-11T15:36:09Z-
dc.date.available2021-09-11T15:36:09Z-
dc.date.issued2020en_US
dc.identifier.citationMedical Technologies National Congress (TIPTEKNO) -- NOV 19-20, 2020 -- ELECTR NETWORKen_US
dc.identifier.isbn978-1-7281-8073-1-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6381-
dc.description.abstractThyroid tumors frequently observed disease by using medical imaging methods. Ultrasonography is the most frequently performed method for diagnosis. To determine, tumor is benign or malign, experienced doctors use various techniques. Fine needle aspiration biopsy and follow-up checking are used for determining type of tumor. However, these methods are time consuming and increasing work load of doctors. So, they created a risk stratification system which has called as ACR-TIRADS. Downside of this system is being subjective and for multiple tumors, it will be time consuming due to analyzing multiple features. To ease, doctors work load and help them to obtain more objective classification, on this study we worked thyroid tumors with texture analysis methods and tried to classify them, to their TIRADS classes. As the result of this study, sensitivity found up %82.8, precision %85 and accuracy found up %73.0.en_US
dc.description.sponsorshipBiyomedikal ve Klinik Muhendisligi Dernegi, Izmir Ekonomi Univ, Izmir Katip Celebi Univen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2020 Medical Technologies Congress (Tiptekno)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTIRADSen_US
dc.subjectUltrasonographic Thyroid Imagesen_US
dc.subjectClassificationen_US
dc.subjectTexture Analysisen_US
dc.titleClassification of Ultrasonographic Thyroid Tumor Images To Tirads Categories Via Texture Analysis Methodsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Biomedical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümütr_TR
dc.identifier.wosWOS:000659419900068en_US
dc.identifier.scopus2-s2.0-85099446384en_US
dc.institutionauthorEroğul, Osman-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceMedical Technologies National Congress (TIPTEKNO)en_US
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

70
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.