Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6380
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTekeli, Bürkan-
dc.contributor.authorGürbüz, Sevgi Zübeyde-
dc.contributor.authorYüksel, Melda-
dc.contributor.authorGürbüz, Ali Cafer-
dc.contributor.authorGüldoğan, Mehmet Burak-
dc.date.accessioned2021-09-11T15:36:09Z-
dc.date.available2021-09-11T15:36:09Z-
dc.date.issued2013en_US
dc.identifier.citationIEEE Radar Conference (RADAR) -- APR 29-MAY 03, 2013 -- Ottawa, CANADAen_US
dc.identifier.isbn978-1-4673-5794-4; 978-1-4673-5792-0-
dc.identifier.issn1097-5764-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6380-
dc.description.abstractThe unique, bi-pedal motion of humans has been shown to generate a characteristic micro-Doppler signature in the time-frequency domain that can be used to discriminate humans from not just other targets, but also between different activities, such as walking and running. However, the classification performance increasingly drops as the aspect angle between the target and radar approaches perpendicular, and the radial velocity component seen by the radar is minimized. In this paper, exploitation of the multi-static micro-Doppler signature formed from multi-angle observations of a radar network is proposed to improve oblique-angle classification performance. The concept of mutual information is applied to find the order of importance of features for a given classification problem, thereby enabling the selection of optimal features prior to classification. Strategies for fusing multistatic data using mutual information and model-based approaches are discussed.en_US
dc.description.sponsorshipIEEE, IEEE Ottawa Sect, AESSen_US
dc.description.sponsorshipEU (COGSENSE) [PIRG-GA-2010-268276]en_US
dc.description.sponsorshipThis work was supported in part by EU FP7 Project No. PIRG-GA-2010-268276 (COGSENSE)<IT>.</IT>en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2013 IEEE Radar Conference (Radar)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleClassification of Human Micro-Doppler in a Radar Networken_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesIEEE Radar Conferenceen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.authorid0000-0002-8029-631X-
dc.authorid0000-0001-8923-0299-
dc.authorid0000-0001-7487-9087-
dc.identifier.wosWOS:000332480800117en_US
dc.identifier.scopus2-s2.0-84884823239en_US
dc.institutionauthorGürbüz, Ali Cafer-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceIEEE Radar Conference (RADAR)en_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

15
checked on Aug 31, 2024

Page view(s)

74
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.