Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6379
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDaglı, Kaya-
dc.contributor.authorEroğul, Osman-
dc.date.accessioned2021-09-11T15:36:08Z-
dc.date.available2021-09-11T15:36:08Z-
dc.date.issued2020en_US
dc.identifier.citationMedical Technologies National Congress (TIPTEKNO) -- NOV 19-20, 2020 -- ELECTR NETWORKen_US
dc.identifier.isbn978-1-7281-8073-1-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6379-
dc.description.abstractBrain tumors threathen human health significantly. Misdiagnosis of these tumors decrease effectiveness of decisions for intervention and patient's state of health. The conventional method to differentiate brain tumors is by the inspection of magnetic resonance images by clinicians. Since there are various types of brain tumors and there are many images that clinicians should examine, this method is both prone to human errors and causes excessive time consumption. In this study, the most common brain tumor types; Glioma, Meningioma and Pituitary are classified using deep learning models. While the main objective of this study is to have a high rate of accuracy, the time spent is also examined. The aim of this study is to ease clinicians work load and have a time efficient classification system. The system which has been built has an accuracy up to 90 %.en_US
dc.description.sponsorshipBiyomedikal ve Klinik Muhendisligi Dernegi, Izmir Ekonomi Univ, Izmir Katip Celebi Univen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2020 Medical Technologies Congress (Tiptekno)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAccuracyen_US
dc.subjectBrain Tumoren_US
dc.subjectClassificationen_US
dc.subjectDeep Learningen_US
dc.subjectMagnetic Resonance Imagesen_US
dc.subjectTime Consumptionen_US
dc.titleClassification of Brain Tumors Via Deep Learning Modelsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Biomedical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümütr_TR
dc.identifier.wosWOS:000659419900018en_US
dc.identifier.scopus2-s2.0-85099462200en_US
dc.institutionauthorEroğul, Osman-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceMedical Technologies National Congress (TIPTEKNO)en_US
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Aug 31, 2024

Page view(s)

130
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.