Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6331
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüler, İnan-
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:35:52Z-
dc.date.available2021-09-11T15:35:52Z-
dc.date.issued2006en_US
dc.identifier.issn0018-9294-
dc.identifier.issn1558-2531-
dc.identifier.urihttps://doi.org/10.1109/TBME.2005.863929-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6331-
dc.description.abstractIn this paper, we present the automated diagnostic systems for Doppler ultrasound signals classification with diverse and composite features and determine their accuracies. We compared the classification accuracies of six different classifiers, namely multilayer perceptron neural network (MLP), combined neural network (CNN), mixture of experts (ME)9 modified mixture of experts (MME), probabilistic neural network (PNN), and support vector machine (SVM), which were trained on diverse or composite features. The present study was conducted with the purpose of answering the question of whether the automated diagnostic systems improve the capability of classification of ophthalmic arterial (OA) and internal carotid arterial (ICA) Doppler signals. Our research demonstrated that the SVM trained on composite feature and the MME trained on diverse features achieved accuracy rates which were higher than that of the other automated diagnostic systems.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Transactions On Biomedical Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcombined neural network (CNN)en_US
dc.subjectcomposite featureen_US
dc.subjectdiverse featuresen_US
dc.subjectDoppler ultrasound signalsen_US
dc.subjectmixture of experts (ME)en_US
dc.subjectmodified mixture of experts (MME)en_US
dc.subjectmultilayer perceptron neural network (MLP)en_US
dc.subjectprobabilistic neural network (PNN)en_US
dc.subjectsupport vector machine (SVM)en_US
dc.titleAutomated Diagnostic Systems With Diverse and Composite Features for Doppler Ultrasound Signalsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume53en_US
dc.identifier.issue10en_US
dc.identifier.startpage1934en_US
dc.identifier.endpage1942en_US
dc.identifier.wosWOS:000240698800009en_US
dc.identifier.scopus2-s2.0-33749519590en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid17019857en_US
dc.identifier.doi10.1109/TBME.2005.863929-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

11
checked on Aug 31, 2024

Page view(s)

78
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.