Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6262
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:35:31Z-
dc.date.available2021-09-11T15:35:31Z-
dc.date.issued2006-
dc.identifier.issn1210-0552-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6262-
dc.description.abstractIn this study, a new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The computed Lyapunov exponents of the EEG signals were used as inputs of the MLPNNs trained with backpropagation, delta-bar-delta, extended delta-bar-delta, quick propagation, and Levenberg-Marquardt algorithms. The performances of the MLPNN classifiers were evaluated in terms of training performance and classification accuracies. Receiver operating characteristic (ROC) curves were used to assess the performance of the detection process. The results confirmed that the proposed MLPNN trained with the Levenberg-Marquardt algorithm has potentiality in detecting the electroencephalographic changes.en_US
dc.language.isoenen_US
dc.publisherAcad Sciences Czech Republic, Inst Computer Scienceen_US
dc.relation.ispartofNeural Network Worlden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectelectroencephalogram (EEG) signalsen_US
dc.subjectchaotic signalen_US
dc.subjectLyapunov exponentsen_US
dc.subjectmultilayer perceptron neural network (MLPNN)en_US
dc.subjecttraining algorithmsen_US
dc.subjectLevenberg-Marguardt algorithmen_US
dc.titleAnalysis of Eeg Signals Using Lyapunov Exponentsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume16en_US
dc.identifier.issue3en_US
dc.identifier.startpage257en_US
dc.identifier.endpage273en_US
dc.identifier.wosWOS:000239159100006-
dc.identifier.scopus2-s2.0-33746286608-
dc.institutionauthorÜbeyli, Elif Derya-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityQ4-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

26
checked on Jan 4, 2025

Page view(s)

90
checked on Jan 6, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.