Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6226
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Temimi, H. | - |
dc.contributor.author | Kürkçü, H. | - |
dc.date.accessioned | 2021-09-11T15:35:22Z | - |
dc.date.available | 2021-09-11T15:35:22Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.issn | 0096-3003 | - |
dc.identifier.issn | 1873-5649 | - |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2014.03.022 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6226 | - |
dc.description.abstract | Troesch's problem is a two-point boundary value problem that arises in the confinement of a plasma column by radiation pressure and in the theory of gas porous electrodes. It has attracted significant amount of interest for the last 50 years. Current numerical solvers developed so far suffers significantly for large values of the sensitivity parameter lambda. Here, we present a new scheme that can be shown to outperform every alternative numerical evaluation procedure and can provide accurate solutions for arbitrarily large values of the parameter. Our solution based on derivation of a new asymptotic form where the difference of solution and this approximation decays exponentially. For moderate values of the parameter, further, we use a discontinuous Galerkin method to calculate this difference. We include a variety of numerical results that confirm that, indeed, our algorithm compares favorably with alternative methods. (C) 2014 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Inc | en_US |
dc.relation.ispartof | Applied Mathematics And Computation | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Troesch's problem | en_US |
dc.subject | Arbitrary sensitivity | en_US |
dc.subject | Asymptotic solution | en_US |
dc.subject | Discontinuous Galerkin method | en_US |
dc.title | An Accurate Asymptotic Approximation and Precise Numerical Solution of Highly Sensitive Troesch's Problem | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Science and Literature, Department of Mathematics | en_US |
dc.department | Fakülteler, Fen Edebiyat Fakültesi, Matematik Bölümü | tr_TR |
dc.identifier.volume | 235 | en_US |
dc.identifier.startpage | 253 | en_US |
dc.identifier.endpage | 260 | en_US |
dc.authorid | 0000-0002-9062-0291 | - |
dc.identifier.wos | WOS:000335898500027 | en_US |
dc.identifier.scopus | 2-s2.0-84897426067 | en_US |
dc.institutionauthor | Kürkçü, Harun | - |
dc.identifier.doi | 10.1016/j.amc.2014.03.022 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Matematik Bölümü / Department of Mathematics Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
4
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
12
checked on Aug 31, 2024
Page view(s)
86
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.