Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6224
Title: | Alternating Sums Of The Powers Of Fibonacci And Lucas Numbers | Authors: | Kılıç, Emrah Ömür, Neşe Ulutaş, Yücel Türker |
Keywords: | Fibonacci and Lucas numbers alternating sums Binet formulas |
Publisher: | Univ Miskolc Inst Math | Abstract: | We shall consider alternating Melham's sums for Fibonacci and Lucas numbers of the form Sigma(n)(k=1) (-1)(k) F-2k+delta(2m+epsilon) and Sigma(n)(k=1) (-1)(k) L-2k+delta(2m+epsilon), where epsilon, delta is an element of {0, 1}. | URI: | https://doi.org/10.18514/MMN.2011.280 https://hdl.handle.net/20.500.11851/6224 |
ISSN: | 1787-2405 |
Appears in Collections: | Matematik Bölümü / Department of Mathematics Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
9
checked on Nov 9, 2024
WEB OF SCIENCETM
Citations
11
checked on Aug 31, 2024
Page view(s)
106
checked on Nov 11, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.