Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6203
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.contributor.authorGüler, İnan-
dc.date.accessioned2021-09-11T15:35:17Z-
dc.date.available2021-09-11T15:35:17Z-
dc.date.issued2006en_US
dc.identifier.citation8th Brazilian Symposium on Neural Networks -- SEP 29-OCT 01, 2004 -- Sao Luis, BRAZILen_US
dc.identifier.issn0925-2312-
dc.identifier.urihttps://doi.org/10.1016/j.neucom.2006.01.002-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6203-
dc.description.abstractNeural networks have recently been introduced to the microwave area as a fast and flexible vehicle to microwave modeling, simulation and optimization. In this paper, a new approach based on adaptive neuro-fuzzy inference system (ANFIS) was presented for the quasi-TEM characteristics of microshield lines with practical cavity sidewall profiles. The proposed ANFIS model combines the neural network adaptive capabilities and the fuzzy qualitative approach. The ANFIS models were presented to produce a good approximator of the nonlinear relationship between the geometrical parameters and the quasi-TEM characteristics (characteristic impedance and cavity capacitance sensitivity) of microshield lines. The results of the ANFIS models for the characteristic impedance and the cavity capacitance sensitivity of the microshield lines and the results available in the literature obtained by using conformal-mapping technique (CMT) were compared. The drawn conclusions confirmed that the proposed ANFIS models could provide an accurate computation of tile characteristic impedance and the cavity capacitance sensitivity of the microshield lines. (c) 2006 Elsevier B.V. All rights reserved.en_US
dc.description.sponsorshipBrazilian Comp Soc, Int Neural Networks Soc , SIG INNS Brazil Special Interest Grpen_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofNeurocomputingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectadaptive neuro-fuzzy inference system (ANFIS)en_US
dc.subjectmicroshield linesen_US
dc.subjectquasi-TEM characteristicsen_US
dc.subjectconformal mappingen_US
dc.titleAdaptive Neuro-Fuzzy Inference System To Compute Quasi-Tem Characteristic Parameters of Microshield Lines With Practical Cavity Sidewall Profilesen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume70en_US
dc.identifier.issue1-3en_US
dc.identifier.startpage296en_US
dc.identifier.endpage304en_US
dc.identifier.wosWOS:000242602300031en_US
dc.identifier.scopus2-s2.0-33750362152en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.neucom.2006.01.002-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference8th Brazilian Symposium on Neural Networksen_US
dc.identifier.scopusqualityQ2-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

20
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

20
checked on Aug 31, 2024

Page view(s)

104
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.