Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6201
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüler, İnan-
dc.contributor.authorÜbeyli, Derya Elif-
dc.date.accessioned2021-09-11T15:35:16Z-
dc.date.available2021-09-11T15:35:16Z-
dc.date.issued2005en_US
dc.identifier.issn0165-0270-
dc.identifier.issn1872-678X-
dc.identifier.urihttps://doi.org/10.1016/j.jneumeth.2005.04.013-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6201-
dc.description.abstractThis paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for classification of electroencephalogram (EEG) signals. Decision making was performed in two stages: feature extraction using the wavelet transform (V T) and the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. Five types of EEG signals were used as input patterns of the five ANFIS classifiers. To improve diagnostic accuracy, the sixth ANFIS classifier (combining ANFIS) was trained using the outputs of the five ANFIS classifiers as input data. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the saliency of features on classification of the EEG signals were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the EEG signals. (c) 2005 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Neuroscience Methodsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectadaptive neuro-fuzzy inference system (ANFIS)en_US
dc.subjectfuzzy logicen_US
dc.subjectwavelet transformen_US
dc.subjectelectroencephalogram (EEG) signalsen_US
dc.titleAdaptive Neuro-Fuzzy Inference System for Classification of Eeg Signals Using Wavelet Coefficientsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume148en_US
dc.identifier.issue2en_US
dc.identifier.startpage113en_US
dc.identifier.endpage121en_US
dc.identifier.wosWOS:000233151600003en_US
dc.identifier.scopus2-s2.0-26944458497en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid16054702en_US
dc.identifier.doi10.1016/j.jneumeth.2005.04.013-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

421
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

381
checked on Aug 31, 2024

Page view(s)

74
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.