Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6126
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzer, Mehmet Bülent-
dc.date.accessioned2021-09-11T15:35:01Z-
dc.date.available2021-09-11T15:35:01Z-
dc.date.issued2012en_US
dc.identifier.citation24th Conference on Mechanical Vibration and Noise -- AUG 12-15, 2012 -- Chicago, ILen_US
dc.identifier.isbn978-0-7918-4500-4-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6126-
dc.description.abstractLinear structural models contain mass, stiffness and damping matrices as well as a forcing vector. Once these matrices and the forcing vector are known, the response can be calculated through the methods of linear algebra. The system matrices of the linear model do not contain any terms that depend on the system response vector, therefore the calculation of the system response do not require an iterative procedure. On the other hand, frequency domain analysis of non-linear structural models generally contain terms that are non-linear functions of the system response vector. Therefore these terms make the system matrices become dependent on the non-linear system response vector itself. This forces one to employ an iterative solution. The disadvantage of the iterative solution is more pronounced when large degree of freedom systems are analyzed. For each frequency value, the iterative procedure requires solution of large system of equations to be evaluated several times until the iterative procedure converges to a value. Therefore the numerical cost significantly increases as the model size gets larger. This study introduces a method which requires one-time calculation of response of the linear part of the system. After finding the response of the linear part, no further matrix inversions are needed to iteratively find the non-linear system response. In the case studies it will be shown that the proposed method has significant computation time advantages to conventional time domain and frequency domain methods for solution of large non-linear structural models. In order to employ this numerically efficient method, describing function theory is used to obtain a non-linearity matrix which contains the non-linear terms. Also, a computationally efficient recursive method is used to evaluate the inverse of the sum of the linear system impedance and the non-linearity matrix. In order to employ this recursive method the non-linearity matrix is decomposed into summation of rank-one matrices.en_US
dc.description.sponsorshipASME, Design Engn Div, ASME, Comp & Informat Engn Diven_US
dc.language.isoenen_US
dc.publisherAmer Soc Mechanical Engineersen_US
dc.relation.ispartofProceedings of The Asme International Design Engineering Technical Conferences And Computers And Information In Engineering Conference 2012, Vol 1, Pts A And Ben_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleA Numerically Efficient Frequency Domain Method for Analysis of Non-Linear Multi Degree of Freedom Systemsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümütr_TR
dc.identifier.startpage537en_US
dc.identifier.endpage544en_US
dc.authorid0000-0002-0380-5125-
dc.identifier.wosWOS:000335091200063en_US
dc.institutionauthorÖzer, Mehmet Bülent-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference24th Conference on Mechanical Vibration and Noiseen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

74
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.