Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6109
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelikyılmaz, Aslı-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.contributor.authorAktaş, Ramazan-
dc.contributor.authorDoğanay, M. Mete-
dc.contributor.authorCeylan, N. Başak-
dc.date.accessioned2021-09-11T15:34:58Z-
dc.date.available2021-09-11T15:34:58Z-
dc.date.issued2007en_US
dc.identifier.citation11th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2007) -- MAY 14-16, 2007 -- Toronto, CANADAen_US
dc.identifier.isbn978-3-540-72529-9-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6109-
dc.description.abstractThis paper presents a new fuzzy classifier design, which constructs one classifier for each fuzzy partition of a given system. The new approach, namely Fuzzy Classifier Functions (FCF), is an adaptation of our generic design on Fuzzy Functions to classification problems. This approach couples any fuzzy clustering algorithm with any classification method, in a unique way. The presented model derives fuzzy functions (rules) from data to classify patterns into number of classes. Fuzzy c-means clustering is used to capture hidden fuzzy patterns and a linear or a non-linear classifier function is used to build one classifier model for each pattern identified. The performance of each classifier is enhanced by using corresponding membership values of the data vectors as additional input variables. FCF is proposed as an alternate representation and reasoning schema to fuzzy rule base classifiers. The proposed method is evaluated by the comparison of experiments with the standard classifier methods using cross validation on test patterns.en_US
dc.description.sponsorshipInfobright Inc, MaRS Discovery Dist, York Univ, Int Rough Set Soc, Int Fuzzy Syst Assoc, Chinese Assoc Artificial Intelligence, Rough Sets & Soft Computat Soc, Natl Res Council Canadaen_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag Berlinen_US
dc.relation.ispartofRough Sets, Fuzzy Sets, Data Mining And Granular Computing, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfuzzy classificationen_US
dc.subjectfuzzy c-means clusteringen_US
dc.subjectSVMen_US
dc.titleA New Classifier Design With Fuzzy Functionsen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesLecture Notes in Artificial Intelligenceen_US
dc.departmentFaculties, Faculty of Economics and Administrative Sciences, Department of Managementen_US
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, İşletme Bölümütr_TR
dc.identifier.volume4482en_US
dc.identifier.startpage136en_US
dc.identifier.endpage+en_US
dc.identifier.wosWOS:000246403500016en_US
dc.identifier.scopus2-s2.0-38049038377en_US
dc.institutionauthorAktaş, Ramazan-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference11th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2007)en_US
dc.identifier.scopusqualityQ2-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept04.03. Department of Management-
Appears in Collections:İşletme Bölümü / Department of Management
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

8
checked on Aug 31, 2024

Page view(s)

80
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.