Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6097
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDuman, O.-
dc.date.accessioned2021-09-11T15:34:56Z-
dc.date.available2021-09-11T15:34:56Z-
dc.date.issued2007en_US
dc.identifier.issn0011-4642-
dc.identifier.urihttps://doi.org/10.1007/s10587-007-0065-5-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6097-
dc.description.abstractUsing the concept of I-convergence we provide a Korovkin type approximation theorem by means of positive linear operators defined on an appropriate weighted space given with any interval of the real line. We also study rates of convergence by means of the modulus of continuity and the elements of the Lipschitz class.en_US
dc.language.isoenen_US
dc.publisherCzechoslovak Mathematical Journalen_US
dc.relation.ispartofCzechoslovak Mathematical Journalen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectI-convergenceen_US
dc.subjectpositive linear operatoren_US
dc.subjectthe classical Korovkin theoremen_US
dc.titleA Korovkin Type Approximation Theorems Via I-Convergenceen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume57en_US
dc.identifier.issue1en_US
dc.identifier.startpage367en_US
dc.identifier.endpage375en_US
dc.authorid0000-0001-7779-6877-
dc.identifier.wosWOS:000247191800027en_US
dc.institutionauthorDuman, Oktay-
dc.identifier.doi10.1007/s10587-007-0065-5-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Matematik Bölümü / Department of Mathematics
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

15
checked on Aug 31, 2024

Page view(s)

66
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.