Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6058
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEfe, Mehmet Önder-
dc.contributor.authorKasnakoğlu, Coşku-
dc.date.accessioned2021-09-11T15:34:51Z-
dc.date.available2021-09-11T15:34:51Z-
dc.date.issued2008en_US
dc.identifier.citationInternational Joint Conference on Neural Networks -- JUN 01-08, 2008 -- Hong Kong, PEOPLES R CHINAen_US
dc.identifier.isbn978-1-4244-1820-6-
dc.identifier.issn2161-4393-
dc.identifier.urihttps://doi.org/10.1109/IJCNN.2008.4633768-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6058-
dc.description.abstractRepresentation of knowledge within a neural model is an active field of research involved with the development of alternative structures, training algorithms, learning modes and applications. Radial Basis Function Neural Networks (RBFNNs) constitute an important part of the neural networks research as the operating principle is to discover and exploit similarities between an input vector and a feature vector. In this paper, we consider nine architectures comparatively in terms of learning performances. Levenberg-Marquardt (LM) technique is coded for every individual configuration and it is seen that the model with a linear part augmentation performs better in terms of the final least mean squared error level in almost all experiments. Furthermore, according to the results, this model hardly gets trapped to the local minima. Overall, this paper presents clear and concise figures of comparison among 9 architectures and this constitutes its major contribution.en_US
dc.description.sponsorshipIEEEen_US
dc.description.sponsorshipTUB TAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [107E137]; TOBB ETU BAP Programen_US
dc.description.sponsorshipThis work is supported in part by TUB TAK Project No 107E137 and in part by TOBB ETU BAP Program 2006/04. The first author gratefully acknowledges the facilities of TOBB ETU Library.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2008 IEEE International Joint Conference On Neural Networks, Vols 1-8en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleA Comparison of Architectural Varieties in Radial Basis Function Neural Networksen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesIEEE International Joint Conference on Neural Networks (IJCNN)en_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.startpage66en_US
dc.identifier.endpage71en_US
dc.authorid0000-0002-5992-895X-
dc.authorid0000-0002-9928-727X-
dc.identifier.wosWOS:000263827200011en_US
dc.identifier.scopus2-s2.0-56349119880en_US
dc.institutionauthorKasnakoğlu, Coşku-
dc.identifier.doi10.1109/IJCNN.2008.4633768-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceInternational Joint Conference on Neural Networksen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

70
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.