Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6057
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEfe, Mehmet Önder-
dc.date.accessioned2021-09-11T15:34:50Z-
dc.date.available2021-09-11T15:34:50Z-
dc.date.issued2009en_US
dc.identifier.citationIEEE International Conference on Control Applications/International Symposium on Intelligent Control -- JUL 08-10, 2009 -- St Petersburg, RUSSIAen_US
dc.identifier.isbn978-1-4244-4601-8-
dc.identifier.issn1085-1992-
dc.identifier.urihttps://doi.org/10.1109/CCA.2009.5281184-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6057-
dc.description.abstractThis paper presents a comparison of Adaptive Neuro Fuzzy Inference Systems (ANFIS), Multi layer Perceptron (MLP) and Support Vector Machines (SVMs) in identification of a chemical process displaying a rich set of dynamical responses under different operating conditions. The methods considered are selected carefully as they are the foremost approaches exploiting the linguistic representations in ANFIS, connectionist representations in MLP and machine learning based on structural risk minimization in SVM. The comparison metrics are the computational complexity measured by the propagation delay, realization performance and design simplicity. It is seen that SVM algorithm performs better in terms of providing an accurate fit to the desired dynamics but a very close performance result can also be obtained with ANFIS with significantly lower computational cost. Performance with MLP is comparably lower that the other two algorithms yet MLP structure has the lowest computational complexity.en_US
dc.description.sponsorshipIEEE Control Sys Socen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2009 IEEE Control Applications Cca & Intelligent Control (Isic), Vols 1-3en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keywords]en_US
dc.titleA Comparison of Anfis, Mlp and Svm in Identification of Chemical Processesen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesIEEE International Conference on Control Applicationsen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.startpage689en_US
dc.identifier.endpage694en_US
dc.authorid0000-0002-5992-895X-
dc.identifier.wosWOS:000279628300118en_US
dc.identifier.scopus2-s2.0-74049091350en_US
dc.institutionauthorÖnder Efe, Mehmet-
dc.identifier.doi10.1109/CCA.2009.5281184-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceIEEE International Conference on Control Applications/International Symposium on Intelligent Controlen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

10
checked on Aug 31, 2024

Page view(s)

74
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.