Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5859
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAksoylu, B.-
dc.contributor.authorÜnlü Z.-
dc.date.accessioned2021-09-11T15:20:25Z-
dc.date.available2021-09-11T15:20:25Z-
dc.date.issued2013en_US
dc.identifier.isbn9781461463924-
dc.identifier.issn2194-1009-
dc.identifier.urihttps://doi.org/10.1007/978-1-4614-6393-1_15-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5859-
dc.description.abstractWe numerically study the Stokes equation with high-contrast viscosity coefficients. The high-contrast viscosity values create complications in the convergence of the underlying solver methods. To address this complication, we construct a preconditioner that is robust with respect to contrast size and mesh size simultaneously based on the preconditioner proposed by Aksoylu et al. (Comput. Vis. Sci. 11:319-331, 2008). We examine the performance of our preconditioner against multigrid and provide a comparative study reflecting the effect of the underlying discretization and the aspect ratio of the mesh by utilizing the preconditioned inexact Uzawa and Minres solvers. Our preconditioner turns out to be most effective when used as a preconditioner to the inexact p-Uzawa solver and we observe contrast size and mesh size robustness simultaneously. As the contrast size grows asymptotically, we numerically demonstrate that the inexact p-Uzawa solver converges to the exact one. We also observe that our preconditioner is contrast size and mesh size robust under p-Minres when the Schur complement solve is accurate enough. In this case, the multigrid preconditioner loses both contrast size and mesh size robustness. © Springer Science+Business Media New York 2013.en_US
dc.description.sponsorship293978 DMS 1016190 National Science Foundation: 1016190en_US
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.relation.ispartofSpringer Proceedings in Mathematics and Statisticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleNumerical Study of the High-Contrast Stokes Equation and Its Robust Preconditioningen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume41en_US
dc.identifier.startpage237en_US
dc.identifier.endpage262en_US
dc.identifier.scopus2-s2.0-84883406169en_US
dc.institutionauthorAksoylu, Burak-
dc.identifier.doi10.1007/978-1-4614-6393-1_15-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

Page view(s)

44
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.