Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5794
Title: Investigating the Tradeoffs Between Spatial Granularity and Energy Requirements in Wireless Sensor Networks
Authors: İncebacak, Davut
Bıçakcı, Kemal
Tavlı, Bülent
Keywords: Component
Energy requirement
Linear programming
Redundancy
Spatial granularity
Wireless sensor network
Source: UKSim 4th European Modelling Symposium on Computer Modelling and Simulation, EMS2010, 17 November 2010 through 19 November 2010, Pisa, 83958
Abstract: In some wireless sensor network applications like precision agriculture, the network area is divided into a number of well-defined regions (spatial granules) and for each spatial granule a separate measurement is made. In performing the task of collecting the data pertaining to these measurements, there is an inherent tradeoff between number of spatial granules and minimum energy requirements of sensor nodes deployed in the area. In this paper, through a linear programming (LP) framework, we investigate the impact of spatial granularity of measurements on the energy requirements of sensor network. Once redundancy is defined in this context as the duplication of data collected for each granule, our LP model also allows us to determine almost achievable performance benchmarks in idealized yet practical settings which are achievable when redundancy is totally eliminated. © 2010 IEEE.
URI: https://doi.org/10.1109/EMS.2010.75
https://hdl.handle.net/20.500.11851/5794
ISBN: 9780769543086
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Jan 18, 2025

Page view(s)

90
checked on Jan 20, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.