Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5741
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBurak, Çelen V.-
dc.contributor.authorMuhammed, Fatih Demirci-
dc.date.accessioned2021-09-11T15:19:50Z-
dc.date.available2021-09-11T15:19:50Z-
dc.date.issued2012-
dc.identifier.citation2012 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2012, 16 July 2012 through 19 July 2012, Las Vegas, NV, 95339en_US
dc.identifier.isbn9781601322258-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5741-
dc.description.abstractDetecting forest fire is a highly active research area in the field of pattern recognition and computer vision as a number of existing methods available in the literature. The purpose of the proposed study is to select the most suitable color space, features and classifiers for the fire classification. Our approach begins by finding the likelihood of every pixel value. The fire is then defined by multiplying pixel channel value's likelihood. By using a simple thresholding schema, the fire pixel classification process is performed. Our experimental study demonstrates which color space, features and classifiers are most suitable for fire detection.en_US
dc.description.sponsorshipGeorge Mason Univ., Bioiformatics Comput. Biol. Program;HST Harvard Univ. MIT, Biomed. Cybern. Lab.;University of Minnesota, Minnesota Supercomputing Institute;NCAT, Center for Cyber Defense;Argonne's Leadersh. Comput. Facil. Argonne Natl. Lab.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings of the 2012 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2012en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFire and smoke detectionen_US
dc.subjectPattern recognitionen_US
dc.titleFire detection in different color modelsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume2en_US
dc.identifier.startpage1135en_US
dc.identifier.endpage1141en_US
dc.identifier.scopus2-s2.0-84873284891-
dc.institutionauthorDemirci, Muhammed Fatih-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference2012 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2012en_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeConference Object-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

92
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.