Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5508
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAşilioğlu G.-
dc.contributor.authorKaya E. M.-
dc.contributor.authorSarıkaya D.-
dc.contributor.authorGao, S.-
dc.contributor.authorÖzyer, T.-
dc.contributor.authorJida J.-
dc.contributor.authorAlhajj R.-
dc.date.accessioned2021-09-11T15:19:08Z-
dc.date.available2021-09-11T15:19:08Z-
dc.date.issued2011en_US
dc.identifier.isbn9781613501269-
dc.identifier.urihttps://doi.org/10.4018/978-1-61350-126-9.ch006-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5508-
dc.description.abstractDigital image storage and retrieval is gaining more popularity due to the rapidly advancing technology and the large number of vital applications, in addition to flexibility in managing personal collections of images. Traditional approaches employ keyword based indexing which is not very effective. Content based methods are more attractive though challenging and require considerable effort for automated feature extraction. In this chapter, we present a hybrid method for extracting features from images using a combination of already established methods, allowing them to be compared to a given input image as seen in other query-by-example methods. First, the image features are calculated using Edge Orientation Autocorrelograms and Color Correlograms. Then, distances of the images to the original image will be calculated using the L1 distance feature separately for both features. The distance sets will then be merged according to a weight supplied by the user. The reported test results demonstrate the applicability and effectiveness of the proposed approach. © 2012, IGI Global.en_US
dc.language.isoenen_US
dc.publisherIGI Globalen_US
dc.relation.ispartofIntelligent Multimedia Databases and Information Retrieval: Advancing Applications and Technologiesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleA Hybrid Approach To Content-Based Image Retrievalen_US
dc.typeBook Parten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage91en_US
dc.identifier.endpage104en_US
dc.identifier.scopus2-s2.0-84900175559en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.doi10.4018/978-1-61350-126-9.ch006-
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
item.openairetypeBook Part-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

78
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.