Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5505
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelikyılmaz, Aslı-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:19:08Z-
dc.date.available2021-09-11T15:19:08Z-
dc.date.issued2009en_US
dc.identifier.issn1796-203X-
dc.identifier.urihttps://doi.org/10.4304/jcp.4.2.135-146-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5505-
dc.description.abstractFuzzy inference systems based on fuzzy rule bases (FRBs) have been successfully used to model real problems. Some of the limitations exhibited by these traditional fuzzy inference systems are that there is an abundance of fuzzy operations and operators that an expert should identify. In this paper we present an alternate learning and reasoning schema, which use fuzzy functions instead of if...then rule base structures. The new fuzzy function approach optimized with genetic algorithms is proposed to replace the fuzzy operators and operations of FRBs and improve accuracy of the fuzzy models. The structure identification of the new approach is based on a supervised hybrid fuzzy clustering, entitled Improved Fuzzy Clustering (IFC) method, which yields improved membership values. The merit of the proposed fuzzy functions method is that the uncertain information on natural grouping of data samples, i.e., membership values, is utilized as additional predictors while structuring fuzzy functions and optimized with evolutionary methods. The comparative experiments using real manufacturing and financial datasets demonstrate that the proposed method is comparable or better in modeling systems of regression problem domains. © 2009 Academy Publisher.en_US
dc.language.isoenen_US
dc.publisherAcademy Publisheren_US
dc.relation.ispartofJournal of Computersen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFuzzy clusteringen_US
dc.subjectFuzzy functionsen_US
dc.subjectGenetic algorithmsen_US
dc.titleA Genetic Fuzzy System Based on Improved Fuzzy Functionsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume4en_US
dc.identifier.issue2en_US
dc.identifier.startpage135en_US
dc.identifier.endpage146en_US
dc.identifier.scopus2-s2.0-78651562009en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.4304/jcp.4.2.135-146-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

Page view(s)

54
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.