Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/4286
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aaboud, M. | - |
dc.contributor.author | Aad, G. | - |
dc.contributor.author | Abbott, B. | - |
dc.contributor.author | Abdallah, J. | - |
dc.contributor.author | Abdinov, O. | - |
dc.contributor.author | Abeloos, B. | - |
dc.contributor.author | The ATLAS Collaboration | - |
dc.contributor.author | Sultansoy, Saleh | - |
dc.date.accessioned | 2021-09-11T13:34:24Z | - |
dc.date.available | 2021-09-11T13:34:24Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.issn | 1434-6044 | - |
dc.identifier.uri | https://doi.org/10.1140/epjc/s10052-017-5225-7 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/4286 | - |
dc.description.abstract | With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb- 1 of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006(stat.)±0.014(syst.) and 0.093±0.017(stat.)±0.021(syst.) for jet transverse momenta of 200–400 GeV and 1400–1600 GeV , respectively. © 2017, CERN for the benefit of the ATLAS Collaboration. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer New York LLC | en_US |
dc.relation.ispartof | European Physical Journal C | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | [No Keywords] | en_US |
dc.title | Performance of the Atlas Track Reconstruction Algorithms in Dense Environments in Lhc Run 2 | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Material Science and Nanotechnology Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 77 | en_US |
dc.identifier.issue | 10 | en_US |
dc.identifier.scopus | 2-s2.0-85031414979 | en_US |
dc.institutionauthor | Sultansoy, Saleh | - |
dc.identifier.doi | 10.1140/epjc/s10052-017-5225-7 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.6. Department of Material Science and Nanotechnology Engineering | - |
Appears in Collections: | Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
34
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
43
checked on Sep 24, 2022
Page view(s)
96
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.