Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/4265
Title: | The Evaluation of Telecommunication Signal Processing Techniques for EMG Disease Classification | Other Titles: | EMG’de Hastalık Sınıflandırması İçin Haberleşme Sinyal İşleme Tekniklerinin Değerlendirilmesi | Authors: | Çevikgibi, Buğra Alp Güngen, Murat Alp Girici, Tolga |
Keywords: | EMG myopathy neuropathy classification EMG Myopati Nöropati Sınıflandırma |
Publisher: | IEEE | Source: | Çevikgibi, B. A., Güngen, M. A., & Girici, T. EMG’de Hastalık Sınıflandırması İçin Haberleşme Sinyal İşleme Tekniklerinin Değerlendirilmesi. | Abstract: | Electromyography (EMG) is a biological signal widely used in medical imaging. It is used by doctors for the classification and diagnosis of myopathic and neuropathic diseases. Many different techniques have been used to ease the diagnosis of these diseases like machine learning and support vector machines (SVM). In this work, various methods used in telecommunication systems for digital modulation identification have been used to extract features from EMG signals as potential features. The results show success in classifying between different types of EMG waveforms. | URI: | https://hdl.handle.net/20.500.11851/4265 https://doi.org/10.1109/SIU49456.2020.9302330 |
ISSN: | 2165-0608 |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.