Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/4261
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbul, Osman-
dc.contributor.authorKaratas, B.-
dc.date.accessioned2021-04-27T13:04:10Z-
dc.date.available2021-04-27T13:04:10Z-
dc.date.issued2019-09-
dc.identifier.citationAbul, O., & Karatas, B. (2019). Can driving patterns predict identity and gender?. Journal of Ambient Intelligence and Humanized Computing, 1-16.en_US
dc.identifier.issn18685137-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/4261-
dc.identifier.urihttps://link.springer.com/article/10.1007%2Fs12652-019-01457-1-
dc.description.abstractThe advances in vehicle equipment technology enabled us easy and large-scale collection of high-volume vehicle driving data. This data is an important resource for urban area traffic management and vehicle driving support system applications. It has privacy aspects as well. In this study, we are interested in whether machine learning techniques are a real threat to driver re-identification from published CAN (Controller Area Network) bus driving data. To understand, on Uyanik dataset (Takeda et al. in IEEE Trans Intell Transp Syst 12:1609–1623, 2011), we develop machine learning models for driver gender and identity prediction, after a multi step data preprocessing methods of sampling, feature extraction, feature elimination and discretization. Best gender prediction classifiers reached up to 0.97 accuracy rate; and best driver identity prediction classifiers reached up to 0.1 accuracy rate for 105-class and 0.98 accuracy rate for 2-class driver identification tasks. Those high accuracy results, even on a single dataset, suggest that driving patters may indeed act as quasi-identifiers, and hence they should be treated as sensitive personal data. As a result, dissemination of driving data should be done according to non-trivial data privacy protection procedures. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofJournal of Ambient Intelligence and Humanized Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnonymityen_US
dc.subjectdriver identificationen_US
dc.subjectgenderen_US
dc.subjectmachine learningen_US
dc.subjectprivacyen_US
dc.subjectVehicle CAN busen_US
dc.titleCan Driving Patterns Predict Identity and Gender?en_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume12-
dc.identifier.issue1-
dc.identifier.startpage151-
dc.identifier.endpage166-
dc.authorid0000-0002-9284-6112-
dc.identifier.wosWOS:000619874500013en_US
dc.identifier.scopus2-s2.0-85073971851en_US
dc.institutionauthorAbul, Osman-
dc.identifier.doi10.1007/s12652-019-01457-1-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

3
checked on Dec 21, 2024

Page view(s)

200
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.